
Raccoon
A Side-Channel Secure Signature Scheme

Rafael del Pino Thomas Espitau Shuichi Katsumata
PQShield, FR PQShield, FR PQShield, UK

AIST, JP

Mary Maller Fabrice Mouhartem Thomas Prest
PQShield, UK PQShield, FR PQShield, FR

Ethereum Foundation, UK

Mélissa Rossi Markku-Juhani Saarinen
ANSSI, FR PQShield, UK

Tampere University, FI

https://raccoonfamily.org
authors@raccoonfamily.org

https://raccoonfamily.org
mailto:authors@raccoonfamily.org

2 Raccoon

Contents

1 Introduction to Raccoon 3
1.1 Motivation and Context . 3
1.2 Design Rationale and Technical Overview . 4
1.3 Advantages and Limitations . 6
1.4 Use Cases . 7

2 Technical Specification 9
2.1 Parameter Sets . 9
2.2 Notation . 11
2.3 Main Functions . 14
2.4 Auxiliary Functions . 15
2.5 Serialization and Deserialization . 21
2.6 Provenance of Rejection Bounds . 24
2.7 Number Theoretic Transforms . 25
2.8 RBGs for Secret Key Bits and MRBGs for Masking Bits 27
2.9 Known Answer Tests (KATs) . 28

3 Performance Analysis 29
3.1 General Implementation Characteristics . 29
3.2 Performance on the NIST x64 Reference Platform 29
3.3 Hardware Architectures . 31
3.4 Leakage Assessments and Vulnerability Analysis 33

4 Security Analysis 34
4.1 Black-box Security Reduction . 34
4.2 Security against Probing Adversaries . 43
4.3 Concrete Security . 45
4.4 Additional “BUFF” Security Properties . 52

A Rényi Divergence Arguments for Sums of Discrete Uniform Variables 61
A.1 The Sum of Discrete Uniform Variables . 61
A.2 Smooth Rényi Divergence Between Shifted Copies of 𝑃𝑁,𝑇 62
A.3 Distribution of Extreme Events . 65

B Deferred Definitions 66
B.1 Digital Signatures . 66

C More Detail on Hardness Assumptions 67
C.1 Hardness of SelfTargetMSIS . 67
C.2 Hardness of ExtMLWE . 68

D Full Detail on Black-box Security Reduction 70
D.1 Omitted Tools for Security Reduction . 70
D.2 Asymptotic Parameter Selection . 72
D.3 Omitted Security Reduction . 74
D.4 Discussion on Strong EUF-CMA Security. 81

E NIST requirements 85

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 3

1 Introduction to Raccoon

1.1 Motivation and Context

In the past decade, post-quantum cryptography has reached a turning point; institutional bod-
ies and stakeholders initiated standardization and deployment efforts, and a variety of designs
reached a high enough level of maturity to be deployed.

This is epitomized by NIST’s recent standardization in 2020 of the hash-based signatures
XMSS and LMS [CAD+20], as well as its announcement in 2022 of the future standardization of
the lattice-based KEM Kyber, the lattice-based signatures Dilithium and Falcon, and the hash-
based signature SPHINCS+ [AAC+22].

Whilst the efficiency profiles and black-box security of these schemes are well-understood,
resistance against side-channel attacks remains a weak spot for all of them.

Side-channel attacks. In a side-channel attack, an attacker can learn information about the
physical execution of an algorithm, such as its running time or its effect on the power consump-
tion, and electromagnetic or acoustic emission of the device running it. This auxiliary knowledge
can then be leveraged to recover sensitive information, for example, cryptographic keys.

Several side-channel attacks have been proposed against schemes considered by NIST for
standardization, such asDilithium [KAA21, FDK20,MUTS22], Falcon [KA21, GMRR22, ZLYW23],
or SPHINCS and XMSS [KGB+18]. The list above is by no means exhaustive, and in general cryp-
tographic algorithms require implementation countermeasures in order to achieve any meaning-
ful security in the context of side-channel attacks.

Masking. The main countermeasure against side-channel attacks is masking [ISW03]. It con-
sists of splitting sensitive information in 𝑑 shares (concretely: 𝑥 = 𝑥0+· · ·+𝑥𝑑−1), and performing
secure computation using MPC-based techniques. Masking incurs an overhead on the running
time of the protected algorithm: this overhead is linear, quadratic, or worse than quadratic de-
pending on the operation. On the other hand, the cost of a side-channel attack is expected to
grow exponentially in the number of shares 𝑑 [DFS19, MRS22, IUH22]. In other words, masking
provides a trade-off between side-channel resistance and computational efficiency.

Unfortunately, lattice-based signatures contain subroutines that are extremely expensive to
mask [MGTF19, ABC+22]. Hash-based signatures use hash functions as building blocks, and
these are similarly expensive to mask even with state-of-the-art techniques [ZSS+21]. This state
of affairs limits the applicability of masking to these schemes and, by extension, their ability to
be deployed in highly adversarial environments.

A masking-friendly scheme. The main motivation of Raccoon is to cover use cases where
side-channel resistance is important. All subroutines in Raccoon either can be masked with a
quasilinear overhead or do not need to be masked at all. As a result, we can mask Raccoon at
orders that are out of reach for all other existing signature schemes. For example, very high-order
𝑑 = 32 signatures can have a latency that doesn’t affect authentication user experience (tens of
milliseconds – See Table 5). This efficiency gain is not limited to running time; we also propose
techniques that minimize the memory overhead when masking Raccoon at high orders.

One of the most distinctive feature of raccoons is the “mask” around their eyes. In addition,
a group of raccoons is sometimes called a mask of raccoons. Thus we decided to call our scheme
Raccoon, due to its masking-friendly nature.

4 Raccoon

1.2 Design Rationale and Technical Overview

Fiat-Shamirwith aborts. Raccoon is a lattice-based signature scheme based on the Fiat-Shamir
paradigm. Examples of such schemes include BLISS [DDLL13], qTESLA [BAA+17], and of course,
Dilithium [LDK+22], which was selected in 2022 by NIST as its primary standard for signatures.
All these schemes follow the “Fiat-Shamir with aborts” framework proposed by Lyubashesvky
in 2009 [Lyu09] and refined in subsequent works [Lyu12, GLP12, DDLL13, BG14, DKL+18a].

A prototypical instantiation of this framework is provided in Figure 1a. A key subroutine for
achieving security is the rejection sampling step (Line 10). For simplicity, all optimizations are
ignored in order to focus on the key ideas.

Dilithium-Sign(sk,msg) → sig
Input: A signing key sk, a message msg.
Output: A signature sig of msg under sk.
1: (vk, s) B sk, (A, t) B vk
2: 𝜇 B H(H(vk)∥msg)
3: r←U({−𝜂, . . . , 𝜂})ℓ ▷ Slow
4: e′ ←U({−𝜂, . . . , 𝜂})𝑘 ▷ Slow
5: w B A · r + e′ ▷ Fast
6: 𝑐 B G(w, 𝜇)
7: z B 𝑐 · s + r ▷ Fast
8: y B A · z − 𝑐 · t ▷ Fast
9: h B w − y ▷ Fast

10: if Rejection(z, h) is True ▷ Slow
11: goto Line 3
12: sig B (𝑐, h, z)
13: return sig

Raccoon-Sign(sk,msg) → sig
Input: A signing key sk, a message msg.
Output: A signature sig of msg under sk.
1: (vk, s) B sk, (A, t) B vk
2: 𝜇 B H(H(vk)∥msg)
3: (r, e′) B (0𝑘 , 0ℓ) ▷ Fast
4: for 𝑖 ∈ [𝑇] do ▷ Fast
5: r← r + U({−𝜂, . . . , 𝜂 − 1})ℓ ▷ Fast
6: e′ ← e′ + U({−𝜂, . . . , 𝜂 − 1})𝑘 ▷ Fast
7: w B A · r + e′ ▷ Fast
8: 𝑐 B G(w, 𝜇)
9: z B 𝑐 · s + r ▷ Fast

10: y B A · z − 𝑐 · t
11: h B w − y
12: sig B (𝑐, h, z)
13: return sig

(a) Blueprint for Dilithium (b) Blueprint for Raccoon

Figure 1: High-level blueprints for Dilithium and Raccoon. Differences between the blueprints
are highlighted. Operations that need to be masked in the context of side-channels are indicated
with comments: Fast when the overhead is 𝑂 (𝑑 log𝑑) or Slow when the overhead is Ω(𝑑2). We
writeU(𝑆) to denote a set of polynomials in R𝑞 [𝑥] with coefficients in the set 𝑆 . As an example,
we note that with masked Dilithium, for coefficients 𝑟 , one needs to come up with a sum 𝑟 =
𝑟0 + · · · + 𝑟𝑑−1 (mod 𝑞) that is uniform in the range 𝑟 ∈ [−𝜂, 𝜂] but such that each proper subset
of 𝑟𝑖 reveals nothing about 𝑟 . This is a complex operation to implement securely. In Raccoon, the
final 𝑟 has a sum-of-uniform distribution, and the contributing uniform distributions are added
to individual shares. This is much faster but still requires additional randomization and careful
analysis. Furthermore, it is tempting not to implement complex masking for only potentially
vulnerable steps in Dilithium, such as Line 10. Raccoon does not have such ambiguous steps.

Limitations in the context of side-channel attacks and masking. While the black-box
security of Fiat-Shamir with aborts schemes is by now well-understood, its resistance against
side-channel attacks is still in an exploratory state. Several side-channel attacks against unpro-
tected implementations of schemes in this family have been documented. See [PBY17, EFGT17,
BDE+18, BBE+19] and [KAA21, FDK20, MUTS22] for side-channel attacks against unprotected
implementations of BLISS and Dilithium, respectively. Two particularly vulnerable points are

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 5

the generation of ephemeral secrets (Lines 3 and 4) and the rejection sampling step (Line 10).
As discussed in Section 1.1, the main countermeasure to address this class of attacks is mask-

ing. When applying masking to Figure 1a, several difficulties arise:

1. Randomness sampling. Sampling random errors (Lines 3 and 4) is challenging in an
arithmetic masked form. The most efficient known approach is to sample r in Boolean
masked form, then convert the result in arithmetic masked form. This requires so-called
mask conversions [CGV14, HT19, CGTV15]. Despite efficiency improvements since their
introduction in [Gou01], known secure mask conversion algorithms run in time at least
𝑂 (𝑑2). See [BBE+18, Alg. 15], [MGTF19, Alg. 13] and [GR19, §3.2] for concrete instantia-
tions of randomness generation with mask conversions.

2. Challenge computation. In Line 6, a challenge 𝑐 is computed. In classical Fiat-Shamir
schemes, since 𝑐 is a function of public data, it is clear that the challenge computation can
be securely performed unmasked. However, in Fiat-Shamir with aborts, not all signatures
are output, so whether it remains safe to perform the challenge computation unmasked is
an open question. Existing works conjecture that it is still true and perform the challenge
computation unmasked, see for example [BBE+18, Definition 2].

3. Rejection sampling. The rejection sampling step is critical for the security of Fiat-Shamir
with aborts and needs to be masked. In practice, most schemes verify that (z, h) belongs
to a certain set. Once again, the most efficient known techniques require expensive mask
conversions – it has been performed this way in existing masked designs. See [BBE+18,
Alg. 16], [BBE+19, §4], [MGTF19, §5.3.3], and [GR19, Alg. 8] for concrete instantiations of
masked rejection sampling.

Due to these three points, secure masking of schemes such as Dilithium is a challenging task.

A masking-friendly design. Raccoon is based on a design that makes it amenable to mask-
ing. Our main inspiration is the eponymous scheme from [dPPRS23], and Raccoon also shares
similarities with a scheme from [ASY22]. Our main design rationale is to rely solely on masking-
friendly operations. Our high-level design is presented in Figure 1b. Our main design decisions
are the following:

1. No rejection sampling. Since rejection sampling is challenging to mask, we decide to
remove it altogether. Similarly to [dPPRS23, ASY22], an analysis based on the Rényi diver-
gence guarantees the security of Raccoon in certain regimes of parameters. The downside
of this change is that parameters need to be adjusted in order to guarantee security. Com-
pared to Dilithium, the signature size is increased by a factors 5, approximately. On the
other hand, the verification key size remains similar.

2. Sums of uniforms. The security analysis of [ASY22] is valid for Gaussians. However,
these are not amenable to masking, so we replace themwith sums of uniform distributions.
The security analysis becomes more delicate, but the implementation is made considerably
simpler.

Masking Raccoon. We now briefly explain how to mask the blueprint of Figure 1b.

1. Unmasked operations. Computing the challenge 𝑐 (Line 8) and the values y and h
(Lines 10 and 11) can be performed unmasked. Indeed, these values can always be com-
puted from public data, since there is no more rejection sampling.

6 Raccoon

2. Linear operations. These include the computation of w and z (Lines 7 and 9). Due to
their linearity, these operations can be masked in linear overhead 𝑂 (𝑑).

3. Randomness sampling. The most subtle part is related to masking Lines 3 to 6. We
proceed as follows. Each share 𝑎𝑖 (for 𝑖 ∈ [𝑑]) of each integer coefficient 𝑎 of (r, e′) will be
the sum of rep uniform random samples in an interval 𝑆 . As a result, 𝑎 is the sum of rep ·𝑑
uniform samples in 𝑆 . By interleaving the addition of samples of 𝑆 with refresh gadgets,
we can ensure that even an adversary with the ability to probe 𝑡 values can learn no more
than 𝑡 of the individual samples of 𝑆 .

Note that the distribution of signatures is correlated to the number of shares 𝑑 . In other words,
one can determine 𝑑 by observing the distribution of signatures. We do not expect this to be an
issue in practice. In addition, we ensure that verifier-side parameters are independent of 𝑑 .

1.3 Advantages and Limitations

1.3.1 Advantages

Masking-friendliness. The main design principle of Raccoon is amenability to masking. In
effect, Raccoon can be masked at order 𝑑 − 1 with an overhead 𝑂 (𝑑 log𝑑). This allows masking
Raccoon at high orders with a small impact on efficiency.

At high masking orders, memory consumption becomes the new efficiency bottleneck due
to the need to store polynomials masked at high orders. We resolve this by using techniques
that allow significantly reduce the memory cost of masked values. This allows us to implement
Raccoon with 𝑑 = 32 shares, in as little as 128kB of SRAM.1

Standard lattice assumptions. Raccoon relies on (variants) of lattice assumptions that are
well-understood. Indeed, we rely on variants of Module-LWE and Module-SIS (see Section 4.1
for formals statements), similarly to the (selected) primary standard Dilithium. Note that we rely
on self-target Module-SIS for the Euclidean norm, as opposed to the slightly less usual infinity
norm used in Dilithium [LDK+22, Remark 1].

Simple and portable implementation. Two ideas that permeate the design of Raccoon are
the simplicity and portability of implementation. For example, our error distributions are based
on uniform distributions over {0, ..., 2𝑢 − 1}; this makes implementation straightforward across
a wide range of platforms. Similarly, our 49-bit modulus can be split in two 24-bit and 25-bit
moduli; this facilitates implementation on 32-bit architectures.

Unlike many other schemes, for side-channel security Raccoon does not require masked
implementations of symmetric cryptographic components such as SHA-3/SHAKE. The num-
ber of distinct masking gadgets is relatively small, which results in simpler and easier-to-verify
firmware and hardware.

In addition to the scalability of security and theoretical soundness, an essential advantage
of masking countermeasures is that they are less dependent on the physical details of the imple-
mentationwhen compared to logic-level techniques such as dual-rail countermeasures [ABD+14].
Hence the implementations are – to a degree – portable.

Potential relevance to the NIST Threshold Cryptography project. NIST has recently is-
sued a call for Multi-Party Threshold Cryptography (MPTC) [NIS23b]. This document indicates
a high interest in threshold-friendly schemes, and this interest is also reflected in NIST’s call for

1This functional specification does not go into the details of these implementation techniques.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 7

additional PQC signatures [NIS22]. With its simple structure and lack of rejection sampling, we
expect Raccoon to be easier to threshold than schemes such as Falcon or Dilithium.

Potential relevance to NIST’s Masked Circuits project. NIST has indicated its interest to
masking cryptographic schemes via the Masked Circuits project2. While this project is in an
earlier stage than NIST’s PQC and MPTC projects, we expect that Raccoon may be of interest for
the scope of this project, due to its masking-friendly nature.

1.3.2 Limitations

Larger sizes than Falcon andDilithium. Due to the removal of rejection sampling, the signa-
ture size of Raccoon is quite larger than for Dilithium, despite being based on a similar blueprint
and similar assumptions. The verification key sizes are similar to Dilithium’s.

This increase in size is due to the fact that our signature sizes scale logarithmically with the
number of queries. At the moment, our parameter sets and associated security proofs for NIST
level I, III and V cover a maximal number of queries 𝑄𝑠 equal to 253, 251 and 255, respectively.
Our design can readily support higher number of queries if necessary; the signature size would
increase accordingly.

Same assumptions as Dilithium. The assumptions underlying Raccoon and Dilithium are
very similar. While this allows Raccoon to benefit from the same body of work which underpins
the security of Dilithium, it also means that Raccoon does not diversify the security assumptions
compared to already selected standards (Dilithium, Falcon, SPHINCS+, LMS, XMSS).

No resistance against fault attacks. While the design of Raccoon makes it more resilient to
side-channel attacks, fault attacks are also a meaningful threat in real-life adversarial environ-
ments. Our design does not necessarily make a system any more secure against fault attacks.

1.4 Use Cases

We view the RSA and ECC signature use cases requiring physical side-channel security as the
primary use cases for Raccoon. This is a common industry requirement for Smart Cards, Secure
Elements, Authentication Tokens, Hardware Security Modules, IoT Platform Security (secure
boot, Firmware Updates, attestation), Crypto Wallets, and Mobile Phones.

Matching and surpassing the side-channel security of classical signature schemes. For
a signature scheme, we opine that side-channel countermeasures (in FIPS 140-3 terms, “non-
invasive attack mitigations” [NIS19, ISO22]) should be at least as powerful as the countermea-
sures available for classical RSA and Elliptic Curve based signatures defined in FIPS 186-5 [NIS23a].

Creating countermeasures for these older algorithms was relatively straightforward due to
their simple algebraic structure. For example, Coron in CHES 1999 [Cor99] proposed three “stan-
dard” countermeasures for Elliptic Curve Cryptography implementations: Randomization of the
Private Exponent, Blinding the Point P, and Randomized Projective Coordinates. All of these
randomization techniques are based on Elliptic Curves’ homogeneous “one big arithmetic oper-
ation” implementation structure. Similar algebraic randomization, masking, and blinding tech-
niques are commonly applied to RSA. However, most PQC algorithms have a larger number of
algebraically dissimilar algorithmic steps, so analogous techniques are not available. There is
ample evidence that unsecured PQC implementations are highly vulnerable to attacks.

2https://csrc.nist.gov/Projects/masked-circuits

https://csrc.nist.gov/Projects/masked-circuits

8 Raccoon

Upper-bounded signature latency for real-time applications. We wanted the Raccoon
signature rejection rate to be low to facilitate applications that must complete signature genera-
tion within a specific timing bound, which is common in “real-world” authentication systems.

Such real-time bounds can be problematic for schemes based on rejection sampling; each loop
iteration can be seen as an independent Bernoulli trial; there can be any number of iterations.

For Dilithium, the signature generation success rate is approximately 𝑝 ∈ {0.23, 0.19, 0.26}
at security levels {2, 3, 5}, respectfully. On average 1/𝑝 iterations are run. After 𝑛 iterations, the
algorithm has a probability (1−𝑝)𝑛 of not having succeeded. Budgeting 4× the average Dilithium
signature execution time (23 to 32 iterations) still leaves a 1% probability of missing the deadline.
A single Raccoon iteration has a 𝑝 > 0.999 success rate, and latency bounds can be met with a
much smaller margin. This facilitates real-time and safety-critical applications.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 9

2 Technical Specification

This section contains a technical specification for (Masked) Raccoon instantiated to provide the
functionality required in the NIST Call for Additional Signature Schemes [NIS22] using the NIST
PQC Testing API. We include low-level details such as padding, serialization, hashes, and other
components used by the reference implementations and which are required for interoperability.
This description does not address broader Raccoon applications such as threshold signatures or
include an exhaustive description of implementation techniques that a real-life (non-reference)
masked Raccoon implementation may require to achieve resistance against side-channel attacks.

2.1 Parameter Sets

Parameters are provided at security levels matching or exceeding best quantum or classical at-
tacks against AES-𝜅 where𝜅 ∈ {128, 192, 256}. These correspond to NIST Post-Quantum Security
Categories 1, 3, and 5 [NIS22, Section 4.B.3].

Furthermore, we offer internal parameters for masked key generation and signature compu-
tation with 𝑑 masking shares, where 𝑑 ∈ {1, 2, 4, 8, 16, 32}. The variant with 𝑑 = 1 has masking
disabled (“Vanilla Raccoon”), while others offer 𝑡-probing security at masking order 𝑡 = 𝑑 − 1.
The masking order does not affect public keys or signature verification; the same verification
function can verify signatures generated with any 𝑑 .

A naming convention for these parameter sets is adopted in this document and with the
supplied reference implementations:

Raccoon-𝜅-𝑑

When the masking order does not matter (for example, for signature verification), the 𝑑 parame-
ter can be omitted, and Raccoon-𝜅 suffices. Table 1 contains a brief guide to the parameters. Ta-
bles 2 to 4 contain the parameters for Raccoon-128, Raccoon-192, and Raccoon-256 respectively;
parameters which are independent of masking order are marked with an equivalence symbol (=).

Table 1: Raccoon Parameter Legend

Parameter References Description
𝜅 Sections 2.1 and 4.3.1. AES-equivalent security level.
𝑄𝑠 Section 4.3.6. Maximal recommended number of queries.
𝑞 Section 2.7. Integer modulus used in R𝑞 ring arithmetic.
𝑛 Section 4.1. Degree of ring R𝑞 reduction polynomial 𝑥𝑛 + 1.
𝑘 Section 4.1. Number of rows in A, length of vector t.
ℓ Section 4.1. Number of columns in A, length of vector s.
𝜈t Sections 2.3.1 and 2.3.3. Public key low-bit truncation (bits.)
𝜈w Sections 2.3.2 and 2.3.3. Commitment low-bit truncation (bits.)
𝜔 Section 2.4.6. Number of nonzero coefficients in 𝑐poly.

2−64𝐵2
2 Sections 2.4.4 and 2.6. Scaled squared Euclidean norm bound.

𝐵∞ Sections 2.4.4 and 2.6. Infinity norm (absolute value) bound.
|sig| Sections 2.5.1 and 2.6. Length of (detached) signature in bytes.
|vk| Section 2.5.2. Length of public verification key in bytes.
𝑑 Sections 2.2 and 2.4.5. Number of masking shares (order 𝑡 + 1).

rep Section 2.4.5 The number of iterations for SU distribution.
𝑢t Sections 2.3.1 and 2.4.5. Distribution parameter for s and t (uniform bits).
𝑢w Sections 2.3.2 and 2.4.5. Distribution parameter for r and w (uniform bits).
|sk| Section 2.5.3. Length of (reference code) secret key in bytes.

10 Raccoon

Table 2: Parameters for Raccoon-128, NIST Post-Quantum security strength category 1.

Parameter Raccoon-128 128-2 128-4 128-8 128-16 128-32
𝜅 128 = = = = =
𝑄𝑠 253 = = = = =
𝑞 549824583172097 = = = = =
𝑛 512 = = = = =
𝑘 5 = = = = =
ℓ 4 = = = = =
𝜈t 42 = = = = =
𝜈w 44 = = = = =
𝜔 19 = = = = =

2−64𝐵2
2 14656575897 = = = = =

𝐵∞ 41954689765971 = = = = =
|sig| (bytes) 11524 = = = = =
|vk| (bytes) 2256 = = = = =

𝑑 1 2 4 8 16 32
rep 8 4 2 4 2 4
𝑢t 6 6 6 5 5 4
𝑢w 41 41 41 40 40 39

|sk| (bytes) 14800 14816 14848 14912 15040 15296

Table 3: Parameters for Raccoon-192, NIST Post-Quantum security strength category 3.

Parameter Raccoon-192 192-2 192-4 192-8 192-16 192-32
𝜅 192 = = = = =
𝑄𝑠 251 = = = = =
𝑞 549824583172097 = = = = =
𝑛 512 = = = = =
𝑘 7 = = = = =
ℓ 5 = = = = =
𝜈t 42 = = = = =
𝜈w 44 = = = = =
𝜔 31 = = = = =

2−64𝐵2
2 24964497408 = = = = =

𝐵∞ 47419426657048 = = = = =
|sig| (bytes) 14544 = = = = =
|vk| (bytes) 3160 = = = = =

𝑑 1 2 4 8 16 32
rep 8 4 2 4 2 4
𝑢t 7 7 7 6 6 5
𝑢w 41 41 41 40 40 39

|sk| (bytes) 18840 18864 18912 19008 19200 19584

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 11

Table 4: Parameters for Raccoon-256, NIST Post-Quantum security strength category 5.

Parameter Raccoon-256 256-2 256-4 256-8 256-16 256-32
𝜅 256 = = = = =
𝑄𝑠 255 = = = = =
𝑞 549824583172097 = = = = =
𝑛 512 = = = = =
𝑘 9 = = = = =
ℓ 7 = = = = =
𝜈t 42 = = = = =
𝜈w 44 = = = = =
𝜔 44 = = = = =

2−64𝐵2
2 38439957299 = = = = =

𝐵∞ 50958538642039 = = = = =
|sig| (bytes) 20330 = = = = =
|vk| (bytes) 4064 = = = = =

𝑑 1 2 4 8 16 32
rep 8 4 2 4 2 4
𝑢t 6 6 6 5 5 4
𝑢w 41 41 41 40 40 39

|sk| (bytes) 26016 26048 26112 26240 26496 27008

2.2 Notation

Sets, functions and distributions. We note N the set of non-negative integers, including
zero. Given 𝑛 ∈ N, we denote by [𝑛] the set {0, 1, . . . , 𝑛 − 1}.

Let 𝑓 : 𝑋 → 𝑌 be a function, and 𝑥 ∈ 𝑋 . When 𝑓 is deterministic, we use the notation
𝑦 B 𝑓 (𝑥) to indicate that we assign the output of 𝑓 (𝑥) to 𝑦. When 𝑓 is randomized, we instead
use the notation 𝑦 ← 𝑓 (𝑥). From a programming viewpoint, both of these notations indicate an
assignment of the result to the variable on the left. Given a probability distribution D over 𝑌 ,
we note 𝑦 ← D to express that 𝑦 ∈ 𝑌 is sampled from D.

Lastly, we use 𝜔asymp(𝑔(𝜅)) to denote the class of functions that grows asymptotically faster
than 𝑔(𝜅).

Integer representatives. Modular congruence classes 𝑥 ∈ Z𝑞 have a canonical non-negative
integer representative𝑥 ∈ [𝑞], and a canonical signed integer representative−⌊𝑞/2⌋ ≤ 𝑥 < ⌈𝑞/2⌉.
The signed representative is used for quantities representing norms and distances and for func-
tions such as abs(𝑥). For details of serialization and deserialization of integers for transmission
or storage, see Section 2.4.1.

Modulus rounding. Let 𝜈 ∈ N\{0}. Any integer 𝑥 ∈ Z can be decomposed as:

𝑥 = 2𝜈 · 𝑥top + 𝑥bot, (𝑥top, 𝑥bot) ∈ Z × [−2𝜈−1, 2𝜈−1 − 1] . (1)

The decomposition in Eq. (1) is unique. We define the function

⌊·⌉𝜈 : Z ↦→ Z s.t. ⌊𝑥⌉𝜈 = ⌊𝑥/2𝜈⌉ = 𝑥top, (2)

where ⌊·⌉ : R ↦→ Z denotes the rounding operator. More precisely the “rounding half-up”method
⌊𝑥⌉ = ⌊𝑥 + 1/2⌋ where half-way values are rounded up: ⌊2.5⌉ = 3 and ⌊−2.5⌉ = −2.

12 Raccoon

With a slight overload of notation, for any 𝑞 ∈ N\{0} with 𝑞 > 2𝜈 , we allow ⌊·⌉𝜈 to take
inputs in Z𝑞 , in which case, we assume the output is an element in Z𝑞𝜈 where 𝑞𝜈 = ⌊𝑞/2𝜈⌋. I.e.
we define:

⌊·⌉𝜈 : Z𝑞 ↦→ Z𝑞𝜈 = Z⌊𝑞/2𝜈 ⌋ s.t. ⌊𝑥⌉𝜈 = ⌊𝑥/2𝜈⌉ mod 𝑞𝜈 = 𝑥top mod 𝑞𝜈 (3)

where we use the non-negative representative for Z𝑞 and Z𝑞𝜈 . Concretely, in the Raccoon sig-
nature scheme, we define additional smaller moduli 𝑞t = ⌊𝑞/2𝜈t⌋ (used for the public key t and
related quantities), and 𝑞w = ⌊𝑞/2𝜈w⌋ (for an MLWE commitment w and hint computation).

Programming note: The range of 𝑥bot matches that of a standard 𝜈-bit (two’s complement)
signed integer. To obtain 𝑥bot, an implementation can mask low 𝜈 bits and sign-extend bit 𝜈 − 1.
To obtain rounded ⌊𝑥⌉𝜈 = 𝑥top, add a rounding bit and right shift by 𝜈 bits: 𝑥top = ⌊(𝑥 +2𝜈−1)/2𝜈⌋.

Polynomials, vectors, and matrices. Let 𝑞 ∈ N and 𝑛 a power-of-two. We note Z𝑞 = Z/𝑞Z
the quotient ring of integers modulo 𝑞. We also note R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1) the quotient ring
obtained by taking the quotient of Z𝑞 [𝑥] by the ideal generated by (𝑥𝑛 + 1). The canonical
representative of 𝑓 ∈ R𝑞 is the unique polynomial in Z𝑞 [𝑥] of degree < 𝑛 in the equivalence
class 𝑓 . Details of these rings are discussed in Section 2.7.

Scalars are noted in italic lowercase (e.g., 𝑛); this includes elements of Z,Z𝑞 , and R. Vectors
are noted in bold lowercase (e.g., v), and matrices are noted in bold uppercase (e.g., M). Vectors
are column vectors by default; given an𝑚 ×𝑛 matrixM and an 𝑛-element column vector v, their
product M · v is an𝑚-element column vector.

For 𝑝 ∈ [1,∞] and a vector v = (𝑣𝑖)𝑖∈[𝑛] ∈ R𝑛 , we note ∥v∥𝑝 the 𝐿𝑝 norm of v, that is
∥v∥𝑝 = (∑ |𝑣𝑖 |𝑝)1/𝑝 when 𝑝 < ∞ and ∥v∥∞ = max𝑖 |𝑣𝑖 |. If 𝑝 = 2, we may drop the subscript 𝑝:
∥v∥ B ∥v∥2. We recall that the 𝐿𝑝 norm is a non-increasing function of 𝑝; for 𝑟 ≤ 𝑞, ∥v∥𝑞 ≤ ∥v∥𝑟 .

Throughout the document, we may define functions with inputs in Z (resp. Z𝑞) and extend
them to inputs in Z𝑞 (resp. R𝑞). This is simply done by identifying these inputs with their
canonical representatives. We may also extend them freely to inputs that are vectors or matrices
with entries in R𝑞 ; this is simply done by the entry-wise application.

Random sampling. Given a finite set 𝑆 , the notation 𝑥 ← 𝑆 indicates that 𝑥 is sampled uni-
formly at random in 𝑆 . Following NIST terminology and requirements, sampling uses Random
Bit Generators (RBGs) [BK15, TBK+18, BKM+22]. There are also secondary random quantities
that are used only for masking: These are sampled with Masking Random Generators (MRGs),
denoted 𝑥 𝑀←− 𝑆 . For further details, see Section 2.8.

Sums of uniforms. Given a distribution D of support included in an additive group, we note
[𝑇] ·D the convolution of𝑇 identical copies ofD; in other words, [𝑇] ·D is the distribution of the
sum of 𝑇 independent random variables, each being sampled from D. Given integers 𝑢,𝑇 > 0,
and if we noteU(𝑆) the uniform distribution over a finite 𝑆 , we note:

SU(𝑢,𝑇) = [𝑇] · U({−2𝑢−1, . . . , 2𝑢−1 − 1}) .

The acronym SU stands for “sum of uniforms”. This class of distributions is illustrated in Figure 2.
This distribution is highly desirable for our purposes, since for 𝑇 ≥ 4 it verifies statistical prop-
erties in the same way as Gaussians do, see Appendix A. However, unlike Gaussians, they are
straightforward to sample in constant-time and without requiring tables or elaborate mathemat-
ical machinery. This makes them adequate for Raccoon. Given a random variable 𝑋 ∼ SU(𝑢,𝑇),

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 13

−64 0 56

𝑇 = 1
𝑇 = 2
𝑇 = 4
𝑇 = 8

Figure 2: The distribution SU(4,𝑇), for 𝑇 ∈ {1, 2, 4, 8}

its moment-generating function is easily computed, here with 𝑁 = 2𝑢 :

E[𝑒𝑘𝑋] =
(
𝑒𝑁𝑘/2 − 𝑒−𝑁𝑘/2

𝑁 (𝑒𝑘 − 1)

)𝑇
One can check that 𝑋 +𝑇 /2 is sub-Gaussian for 𝜎2 = 𝑁 2𝑇

6 . Hence the sub-Gaussian tail bounds:

P[|𝑋 +𝑇 /2| > 𝜇] ≤ exp

(
− 𝜇2

2𝜎2

)
= exp

(
− 3𝜇2

𝑇𝑁 2

)
(4)

Using Lemma 2.2 from [LPR13] we get a bound on the norm of a vector 𝑌 = (𝑋1, . . . , 𝑋𝑚) of𝑚
iid. variables from SU(𝑢,𝑇). For any 𝑟 ≥ 16:

Pr

[
𝑚∑
1

𝑋 2
𝑖 > 𝑟 ·𝑚 · 𝜎2

]
≤ exp

(
−𝑟 ·𝑚

8

)
(5)

Derivating the moment-generating function gives us the moments and variance of 𝑋 :

E[𝑋] = −𝑇
2
; E[𝑋 2] = 𝑇 (𝑁 2 − 1)

12
+ 𝑇

2

4
; V[𝑋] = 𝑇 (𝑁 2 − 1)

12
; (6)

Note that SU(𝑢,𝑇) is not “symmetric”, in the sense that its expected value and skewness (third-
order moment) are not equal to zero. This could be problematic in applications such as trapdoor
sampling, but is unimportant in the case of Raccoon.

Masking. Masking consists of randomizing any secret-dependent intermediate variable. Each
of these secret-dependent intermediate variables, say x, is split into 𝑑 = 𝑡 + 1 variables (x𝑖)𝑖∈[𝑑]
called “shares”. The integer 𝑡 is referred to as themasking order. We define𝑑 = 𝑡+1 to differentiate
the masking order and the number of shares.

The two most deployed types of masking are arithmetic masking and Boolean masking. The
masking of Raccoon has the advantage of being of only one type: arithmetic masking. Concretely,
in Raccoon, a sensitive variable x is shared in (x𝑖)𝑖∈[𝑑] such that

x =
∑
𝑖∈[𝑑]

x𝑖 mod 𝑞.

A 𝑑-shared variable (x𝑖)𝑖∈[𝑑] will be denoted ⟦x⟧ for readability. The variable 𝑑 is usually clear
from context, but we may use the notation ⟦x⟧𝑑 when we need to make 𝑑 explicit.

14 Raccoon

2.3 Main Functions

This section describes our main functions: key generation (Section 2.3.1), signing (Section 2.3.2)
and verification (Section 2.3.3). Key generation and signing are always performed in a masked
manner; when 𝑑 = 1, the algorithmic descriptions remain valid but the algorithms are, in effect,
unmasked.

2.3.1 Key Generation

Masked key generation process is described by Algorithm 1, with pointers to auxiliary functions
in Section 2.4. For details about the encoding of public and private keys, see Section 2.5.

At a high-level, KeyGen generates 𝑑-sharings (⟦s⟧, ⟦e⟧) of small errors (s, e), computes the
verification key as an LWE sample (A, t = A · s + e), and rounds t for efficiency. A key technique
is that ⟦s⟧, ⟦e⟧ are generated in Lines 4 and 6 using the specialized Algorithm 8. This ensures
that even a 𝑡-probing adversary only learns limited information about (s, e).

Algorithm 1 KeyGen() → (vk, sk)
Input: ∅
Output: Public (signature verification) key vk.
Output: Private (signing) key sk
1: seed← {0, 1}𝜅 ▷ 𝜅-bit random seed for A.
2: A B ExpandA(seed) ▷ Uniform matrix A ∈ R𝑘×ℓ𝑞 . Algorithm 6.
3: ⟦s⟧ ← ℓ × ZeroEncoding(𝑑) ▷Masked zero vector ⟦s⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 12.
4: ⟦s⟧ ← AddRepNoise(⟦s⟧, 𝑢t, rep) ▷ Generate the secret distribution. Algorithm 8.
5: ⟦t⟧ B A · ⟦s⟧ ▷ Compute masked product ⟦t⟧ ∈ (R𝑘𝑞)𝑑 .
6: ⟦t⟧ ← AddRepNoise(⟦t⟧, 𝑢t, rep) ▷ Add masked noise to ⟦t⟧. Algorithm 8.
7: t B Decode(⟦t⟧) ▷ Collapse t ∈ R𝑘𝑞 . Algorithm 13.
8: t B ⌊t⌉𝜈t ▷ Rounding and right-shift to modulus 𝑞t = ⌊𝑞/2𝜈t⌋.
9: return (vk B (seed, t), sk B (vk, ⟦s⟧)) ▷ Return serialized key pair.

2.3.2 Signing Procedure

Masked signing process is described by Algorithm 2. We recall that Raccoon has a Fiat-Shamir
structure. Concretely, the signing procedure follows a similar flow to, e.g., Schnorr or ECDSA
signatures:

1. Commit. Ephemeral random noise is generated in masked form, and an LWE commit-
mentw is computed in masked form, then unmasked (Lines 4 to 9); in KeyGen, ephemeral
random noise generation is done through AddRepNoise, in order to limit the information
learned by a probing adversary;

2. Challenge. A challenge is computed as a function of the message msg, the verification key
vk and the LWE commitmentw (Lines 10 and 11); as in Dilithium, this computation is split
in two subroutines (ChalHash and ChalPoly), as it is more convenient for implementation;

3. Response. A response (h, z) is computed from the ephemeral random noise, private key
and challenge (Lines 14 to 18). The first part of this computation is performed masked, and
the second part is unmasked since it only involves public data. Note that y is computed
over R𝑞 by naturally lifting t ∈ R𝑘𝑞𝑡 to R𝑘𝑞 .

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 15

The signature is a serialization of the challenge and the response (Line 19). The signer checks
some bounds relative to the signature before outputting it (Line 20). Note that Line 20 is not a
rejection sampling step; there is no need to mask it.

Algorithm 2 Sign(⟦sk⟧,msg) → sig
Input: Secret signing key sk = (vk, ⟦s⟧)
Input: Message to be signed msg ∈ {0, 1}∗.
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: (vk, ⟦s⟧) B sk, (seed, t) B vk ▷ Deserialize variables from ⟦sk⟧.
2: 𝜇 B H(H(vk)∥msg) ▷ Bind vk with msg to form 𝜇 ∈ {0, 1}2𝜅 .
3: A B ExpandA(seed) ▷ Uniform matrix A ∈ R𝑘×ℓ𝑞 . Algorithm 6.
4: ⟦r⟧ ← ℓ × ZeroEncoding(𝑑) ▷Masked zero vector ⟦r⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 12.
5: ⟦r⟧ ← AddRepNoise(⟦r⟧, 𝑢w, rep) ▷ Add masked noise to ⟦r⟧. Algorithm 8.
6: ⟦w⟧ B A · ⟦r⟧ ▷ Compute masked product ⟦w⟧ ∈ (R𝑘𝑞)𝑑 .
7: ⟦w⟧ ← AddRepNoise(⟦w⟧, 𝑢w, rep) ▷ Add masked noise to ⟦w⟧. Algorithm 8.
8: w B Decode(⟦w⟧) ▷ Collapse LWE commitment w. Algorithm 13.
9: w B ⌊w⌉𝜈w ▷ Rounding and right-shift to modulus 𝑞w = ⌊𝑞/2𝜈w⌋.

10: 𝑐hash B ChalHash(w, 𝜇) ▷Map w and 𝜇 to 𝑐hash ∈ {0, 1}2𝜅 . Algorithm 9.
11: 𝑐poly B ChalPoly(𝑐hash) ▷Map 𝑐hash to 𝑐poly ∈ R𝑞 . Algorithm 10.
12: ⟦s⟧ ← Refresh(⟦s⟧) ▷ Refresh ⟦s⟧ before re-use. Algorithm 11.
13: ⟦r⟧ ← Refresh(⟦r⟧) ▷ Refresh ⟦r⟧ before re-use. Algorithm 11.
14: ⟦z⟧ B 𝑐poly · ⟦s⟧ + ⟦r⟧ ▷Masked response ⟦z⟧ ∈ (Rℓ𝑞)𝑑 .
15: ⟦z⟧ ← Refresh(⟦z⟧) ▷ Refresh ⟦z⟧ before collapsing it. Algorithm 11.
16: z B Decode(⟦z⟧) ▷ Collapse into response z ∈ Rℓ𝑞 . Algorithm 13.
17: y B A · z − 2𝜈t · 𝑐poly · t ▷ “Noisy” LWE commitment.
18: h B w − ⌊y⌉𝜈w ▷ Compute hint h ∈ R𝑘𝑞𝑤 . Subtraction mod 𝑞w.
19: sig B (𝑐hash, h, z) ▷ Serialize signature. Section 2.5.
20: if {CheckBounds(sig) = FAIL} goto Line 4 ▷ Sanity check on the signature. Algorithm 4.
21: return sig ▷ Return encoded signature triplet.

2.3.3 Verification Procedure

Algorithm 3 describes the signature verification process. Signature verification is not masked,
and its parameters are independent of the number of shares 𝑑 used when creating the signature.
Verification operates in a similar way to most lattice-based Fiat-Shamir signatures:

1. A bound check is performed (Line 2);

2. An equality check 𝑐hash
?
= ChalHash

(⌊
A · z − 2𝜈t · 𝑐poly · t

⌉
𝜈w
+ h, 𝜇

)
is performed.

2.4 Auxiliary Functions

2.4.1 Encoding of Variables

Raccoon uses the little-endian convention for byte serialization: the least significant byte of an
integer comes first. Bits and polynomial coefficients are also numbered from the least significant
bit/coefficient (bit/coefficient zero) toward the more significant ones.

Let 𝑏0, 𝑏1, . . . 𝑏𝑛−1 be a sequence of 𝑛 bits 𝑏𝑖 ∈ {0, 1}. We write 𝑏 B Ser(𝑥) to be the serializa-
tion of object 𝑥 into bits, and 𝑥 B Deser(𝑏) its inverse.

16 Raccoon

Algorithm 3 Verify(sig,msg, vk) → {OK or FAIL}
Input: Detached signature sig = (𝑐hash, h, z).
Input: Message whose signature is verified: msg ∈ {0, 1}∗.
Input: Public verification key vk = (seed, t).
Output: Signature validity: OK (accept) or FAIL (reject).
1: (𝑐hash, h, z) B sig, (seed, t) B vk ▷ Deserialize sig and vk. Section 2.5.
2: if CheckBounds(sig) = FAIL return FAIL ▷ Norms check. Algorithm 4.
3: 𝜇 B H(H(vk)∥msg) ▷ Bind public key with message to form 𝜇 ∈ {0, 1}2𝜅 .
4: A B ExpandA(seed) ▷ Uniform matrix A ∈ R𝑘×ℓ𝑞 . Algorithm 6.
5: 𝑐poly B ChalPoly(𝑐hash) ▷Map 𝑐hash to 𝑐poly ∈ R𝑞 . Algorithm 10.
6: y B A · z − 2𝜈t · 𝑐poly · t ▷ Scale t from Z𝑞t to Z𝑞 and recompute the commitment.
7: w′ B ⌊y⌉𝜈w + h ▷ Adjust the LWE commitment with hint (mod 𝑞w).
8: 𝑐′hash B ChalHash (w′, 𝜇) ▷ Recompute 𝑐′hash ∈ {0, 1}

2𝜅 . Algorithm 9.
9: if 𝑐hash ≠ 𝑐′hash return FAIL ▷ Check commitment.

10: return OK ▷ Signature is accepted.

• Bit strings and concatenation. With 𝑐 = 𝑎 ∥ 𝑏 wemean that 𝑐 equals the concatenation of
bit strings 𝑎 and 𝑏. Single vertical denotes the lengths: 𝑛𝑎 = |𝑎 |, 𝑛𝑏 = |𝑏 |, 𝑛𝑐 = 𝑛𝑎 +𝑛𝑏 = |𝑐 |.
Concatenated bit strings satisfy 𝑐𝑖 = 𝑎𝑖 for 0 ≤ 𝑖 < 𝑛𝑎 and 𝑐𝑖 = 𝑏𝑖−𝑛𝑎 for 𝑛𝑎 ≤ 𝑖 < 𝑛𝑐 .

• Unsigned integers. For non-negative integers, 𝑥 = Deser2𝑛 (𝑏) =
∑𝑛−1
𝑖=0 2𝑖 · 𝑏𝑖 with result-

ing range 0 ≤ 𝑥 < 2𝑛 . Conversely, serialization𝑏 = Ser2𝑛 (𝑥) yields bits𝑏𝑖 = ⌊2−𝑖 ·𝑥⌋ mod 2.
For unsigned serialization Ser𝑞 (𝑥) of 𝑥 ∈ Z𝑞 (modular congruence classes) into𝑛 = ⌈log2 𝑞⌉
bits we normalize 𝑥 to range 0 ≤ 𝑥 < 𝑞 and use 𝑏 = Ser2𝑛 (𝑥) . Similarly deserialization of
Z𝑞 elements computes 𝑥 = Deser2𝑛 (𝑏) but checks that 0 ≤ 𝑥 < 𝑞. The encoding is invalid
if this condition is not satisfied.

• Signed integers. In signed deserialization, we interpret the highest bit 𝑏𝑛−1 as a sign
bit: 𝑥 = Deser±2𝑛 (𝑏) = (

∑𝑛−2
𝑖=0 2𝑖 · 𝑏𝑖) − (2𝑛−1 · 𝑏𝑛−1) . This is equivalent to the common

“two’s complement” representation. The numerical range representable by 𝑛 bits is there-
fore −2𝑛−1 ≤ 𝑥 < 2𝑛−1. We normalize 𝑥 ∈ Z𝑟 to range −⌊𝑟/2⌋ ≤ 𝑥 < ⌈𝑟/2⌉ before signed
serialization Ser±𝑟 (𝑥) into ⌈log2 𝑟⌉ bits. When deserializing a signed integer to the result of
𝑥 = Deser±𝑟 (𝑏) must be in this range or the encoding is invalid.

• Bits as bytes. Bit strings are commonly manipulated as arrays of bytes (Z𝑚
28
). Serialization

of 𝑚 bytes 𝑏 = Ser28 (𝑣0, 𝑣1, . . . , 𝑣𝑚−1) produces |𝑏 | = 8𝑚 bits. Each byte 𝑣 𝑗 has a non-
negative numerical value satisfying 𝑥 = 𝑣 𝑗 =

∑7
𝑖=0 2

𝑖 · 𝑏8𝑗+𝑖 . Conversely, bit 𝑏𝑖 ∈ {0, 1} can
be extracted from byte 𝑥 = 𝑣 𝑗 , 𝑗 = ⌊𝑖/8⌋ with 𝑏𝑖 = ⌊2(8𝑗−𝑖) · 𝑥⌋ mod 2.

• Polynomials and Vectors of Polynomials. Polynomials (such as R𝑞 ring elements)
𝐹 (𝑥) =

∑𝑛−1
𝑖=0 𝑓𝑖 · 𝑥𝑖 are serialized as a concatenation of 𝑛 coefficient integers 𝑓𝑖 ∈ Z𝑞 :

Ser𝑞 (𝐹) = Ser𝑞 (𝑓0) | · · · | Ser𝑞 (𝑓𝑛−1), requiring 𝑛⌈log2 𝑞⌉ bits. Signed polynomial serial-
ization𝑏 = Ser±𝑟 (𝐹) and deserialization 𝐹 = Deser±𝑟 (𝑏) works the sameway but uses signed
integer representation for all coefficients. Vectors of polynomials Ser𝑞 (x) are concatenated
in increasing index order.

2.4.2 Symmetric Cryptography: SHAKE256

Raccoon uses the SHAKE256 Extendable-Output Function (XOF) as its sole symmetric crypto-
graphic building block. It is defined in the SHA-3 standard FIPS 202 [NIS15]. A permutation-

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 17

based XOF such as SHAKE256 can be abstracted into initialize, absorb (write), and squeeze (read)
phases:

• Initialize: XOF.init(𝑚0) clears the state of XOF and loads the first (possibly zero-length)
message chunk𝑚0 into it. Note that parameter𝑚0 is optional: XOF.init(𝑚0) is equivalent
to XOF.init() followed by XOF.input(𝑚0)

• Absorb: XOF.input(𝑚𝑖) mixes an arbitrarily-length message𝑚𝑖 into the internal state of
the XOF. This step can be repeated any number of times. Note that chunk lengths |𝑚𝑖 | are
not authenticated: repeated updates with data items𝑚1,𝑚2,𝑚3 · · · result in the same state
as a single update with their concatenation (𝑚1∥𝑚2∥𝑚3∥ · · ·).

• Squeeze: ℎ𝑖 B XOF.output(𝑛𝑖) extracts 𝑛𝑖 bits of hash output from the state: we have
ℎ𝑖 ∈ {0, 1}𝑛𝑖 or |ℎ𝑖 | = 𝑛𝑖 . The First XOF.output() call performs padding on the state before
producing the first ℎ0, and no further XOF.input() calls are possible before the state is
re-initialized with XOF.init(). For ease of implementation, 𝑛𝑖 is always a multiple of 8 in
Raccoon: ℎ𝑖 is 𝑛𝑖/8 full bytes.

2.4.3 XOF Inputs: The Domain Separation Prefix

For its internal hashes Raccoon uses a domain-separating input prefix hdr. This is a 64-bit (8-
byte) identifier that defines the structure of the rest of the XOF input and also the purpose of
the XOF call. The first byte of the prefix is an ASCII letter related to the variable name, while
subsequent bytes define further information. This allows many random quantities to be derived
from a single seed and also prevents some potential attacks.

For vectors and matrices, the prefix also contains indices that allow computations of large
quantities such as A to be parallelized in “counter mode”; some SIMD architectures (such as
AVX2) can compute several Keccak permutations in parallel faster than executing them sequen-
tially.

Note that not all domain separation is technically necessary to thwart perceived attacks. The
public key and message hashes (in the 𝜇 variable computation) do not use prefix encoding. This
is to simplify interfacing as in some use cases the 𝜇 message hash is computed externally and
passed to a Raccoon hardware module.

2.4.4 Checking Bounds

The function CheckBounds (Algorithm 4) is used to check the norm bounds and encoding sound-
ness of signatures by both the verification function (Algorithm 3), but also by the signing function
(Algorithm 2). For information about how the bounds were selected, see Section 2.6.

The function also checks that the compressed signature fits in the allocated fixed space. In
signing, the length check is done by the encoding process (after norms checks), while in the ver-
ification, it is performed by the decoding process (before the norms checks). The order of checks
in this function is not important from a security viewpoint, and an “early FAIL” in CheckBounds
will not cause (timing attack) security issues.

The decoded hint vectors h contain relatively small signed integers, so the computation of
𝐿2 and 𝐿∞ norms is straightforward; these correspond to the sum of squares and the largest
absolute number. For the z coefficients z𝑖 , we use an approximate 𝐿2 bound 2−64𝐵2

2 to avoid “big
integer” arithmetic: We first compute the absolute value (abs(𝑥) = 𝑞 − 𝑥 if (𝑥 mod 𝑞) > 𝑞/2
and 𝑥 otherwise.) The absolute value is shifted right by 32 bits before squaring so that the sum
of squares will fit into a 64-bit integer. Comparison is approximate as it is performed with a 𝐿2
bound scaled by (2−32)2 = 2−64. Note that forgoing the abs(𝑥) step before division may give
slightly different results if the rounding is not toward zero.

18 Raccoon

Algorithm 4 CheckBounds(sig) → {OK or FAIL}
Input: Serialized signature sig = (𝑐hash, h, z).
Output: Format validity check OK or FAIL.
1: if |sig| ≠ |sig|default return FAIL ▷ Fail if signature length or encoding are anomalous.
2: (𝑐hash, h, z) B sig ▷ Deserialize signature.
3: if ∥h∥∞ > ⌊𝐵∞/2𝜈w⌉ return FAIL ▷ Scale and round the bound for hints.
4: if ∥z∥∞ > 𝐵∞ return FAIL ▷ Absolute value check on z.
5: ℎ2 B 2(2𝜈w−64) · ∥h∥22 ▷ Scaled sum of squares of h coefficients.
6: 𝑧2 B

∑
𝑖 ⌊abs(z𝑖)/232⌋2 ▷ Sum of squares of z coefficient shifted right by 32 bits.

7: if (ℎ2 + 𝑧2) > 2−64𝐵2
2 return FAIL ▷ Scaled / Approximate Squared Euclidean Norm.

8: return OK ▷ Passed norms checks.

Seed expansion. SampleQ (Algorithm 5) is used to implement the ExpandA seed expansion
function (Algorithm 6). It maps its inputs (a header hdr and a seed𝜎) to a pseudo-random uniform
polynomial 𝑓 ∈ R𝑞 . It is also used by the reference implementation in the secret key encoding
and decoding process (Section 2.5.3).

Algorithm 5 SampleQ(hdr, 𝜎) → R𝑞
Input: Domain separation header hdr ∈ {0, 1}64.
Input: Secret key or public seed 𝜎 ∈ {0, 1}𝜅 .
Output: Uniform polynomial 𝑓 ∈ R𝑞 .
1: XOF.init(hdr) ▷ 64-bit domain separation header. XOF defined in Section 2.4.2.
2: XOF.input(𝜎) ▷ Absorb the public seed or secret key material.
3: for 𝑖 ∈ {0, 1, · · · , 𝑛 − 1} do ▷ Generate coefficients 𝑓0, 𝑓1, · · · , 𝑓𝑛−1 in this order.
4: repeat ▷ Rejection sampler loop.
5: 𝑏 B XOF.output(56) ▷ Squeeze ⌈49/8⌉ = 7 bytes (56 bits) from XOF.
6: 𝑓𝑖 B Deser249 (𝑏0∥𝑏1∥ · · · ∥𝑏48) ▷ Take low 49 bits, unsigned little-endian.
7: until 0 ≤ 𝑓𝑖 < 𝑞 ▷ Discard if not in range 0 ≤ 𝑓𝑖 < 𝑞.
8: return 𝑓 (𝑥) B ∑

𝑖∈[𝑛] 𝑓𝑖 · 𝑥𝑖 ▷ Coefficients of (at most) 𝑛 − 1 degree polynomial.

GeneratingA. One can generate the entries of thematrixA in any order (or entirely in parallel)
with SampleQ (Algorithm 5) as shown in ExpandA (Algorithm 6). Based on memory and per-
formance considerations, implementors may choose to generate elements A𝑖, 𝑗 on the fly (when
required), or to generate several elements in parallel.

Algorithm 6 ExpandA(seed) → A

Input: Public seed ∈ {0, 1}𝜅 .
Output: 𝑘 × ℓ generator matrix A.
1: for 𝑖 ∈ [𝑘] do ▷ Rows: Calculation order is arbitrary.
2: for 𝑗 ∈ [ℓ] do ▷ Columns: Calculation order is arbitrary.
3: hdr𝐴 B Ser28 (65, 𝑖, 𝑗, 0, 0, 0, 0, 0) ▷ 64 bits: 'A', row, column, 5 zero bytes.
4: A𝑖, 𝑗 B SampleQ(hdr𝐴, seed) ▷ Uniform polynomial.
5: return A ▷ Public generator matrix.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 19

2.4.5 Error Distributions

AddRepNoise (Algorithm 8) implements the Sum of Uniforms (SU) distribution SU(𝑢,𝑑 · rep)
(Section 2.2) in a masked implementation. AddRepNoise interleaves noise additions and refresh
operations; more precisely, for each (masked) coefficient ⟦𝑎⟧ of ⟦v⟧, small uniform noise is added
to each share of ⟦𝑎⟧, then ⟦𝑎⟧ is refreshed, and this operation is repeated rep times.

Internally, the function uses SampleU (Algorithm 7) to expand 𝜅-bit seeds 𝜎 into pseudoran-
dom polynomials with coefficients in the set {−2𝑢−1, . . . , 2𝑢−1 − 1}.

Algorithm 7 SampleU(hdr, 𝜎,𝑢) → (𝑓𝑖)𝑖∈[𝑛]
Input: Domain separation header hdr ∈ {0, 1}64.
Input: Distribution parameter 𝑢 (“bits”).
Input: Secret key material 𝜎 ∈ {0, 1}𝜅 .
Output: R𝑞 coefficients satisfying −2𝑢−1 ≤ 𝑓𝑖 < 2𝑢−1.
1: XOF.init(hdr) ▷ Domain separation header. XOF defined in Section 2.4.2.
2: XOF.input(𝜎) ▷ Absorb the secret.
3: for 𝑖 ∈ [𝑛] do ▷ Generate 𝑓0, 𝑓1, · · · , 𝑓𝑛−1.
4: 𝑏 B XOF.output(8⌈𝑢/8⌉) ▷ Squeeze full bytes from XOF.
5: 𝑓𝑖 B Deser±2𝑢 (𝑏0∥𝑏1∥ · · · ∥𝑏𝑢−1) ▷ Deserialize low 𝑢 bits, signed little-endian.
6: return (𝑓0, 𝑓1, · · · , 𝑓𝑛−1) ▷ Polynomial

∑
𝑖∈[𝑛] 𝑓𝑖𝑥

𝑖 coefficients.

Algorithm 8 AddRepNoise(⟦v⟧, 𝑢, rep) → ⟦v⟧
Input: Masked vector ⟦v⟧ = (v𝑗) 𝑗∈[𝑑] = (𝑣𝑖, 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑] .
Input: Bit size (distribution parameter) 𝑢.
Input: Global repetition count parameter rep.
Output: Updated ⟦v⟧ with SU(𝑢,𝑑 · rep) distribution added to each coefficient of v.
1: for 𝑖 ∈ [len(v)] do ▷ Vector index.
2: for 𝑖rep ∈ [rep] do ▷ Repetition index.
3: for 𝑗 ∈ [𝑑] do ▷ Share index.
4: 𝜎 ← {0, 1}𝜅 ▷ Secret key material (use RBG).
5: hdr𝑢 B Ser28 (117, 𝑖rep, 𝑖, 𝑗, 0, 0, 0, 0) ▷ 64 bits: 'u', rep, idx, share.
6: 𝑣𝑖, 𝑗 ← 𝑣𝑖, 𝑗 + SampleU(hdr𝑢, 𝜎,𝑢) ▷ Add small uniform to the polynomial.
7: ⟦v𝑖⟧ ← Refresh(⟦v𝑖⟧) ▷ Refresh polynomial on each repeat.
8: return ⟦v⟧

2.4.6 Challenge Computation

As in Dilithium, the challenge computation is split in two subroutines: ChalHash (Algorithm 9)
and ChalPoly (Algorithm 9). This makes implementation simpler, as the signing procedure calls
ChalHash followed by ChalPoly, whereas the verification procedure calls ChalPoly followed by
ChalHash. These functions do not need masking or timing attack protection.

Challenge hash computation. The function ChalHash (Algorithm 9) is used to compute a
2𝜅-bit digest of the commitment w and message hash 𝜇 (bound to public key vk). This is a
straightforward hash computation.

20 Raccoon

Algorithm 9 ChalHash(w, 𝜇) → 𝑐hash

Input: Commitment w = (𝑤𝑖)𝑖∈[𝑘] .
Input: Message hash 𝜇 = H(H(vk)∥msg) ∈ {0, 1}2𝜅 .
Output: A challenge digest 𝑐hash ∈ {0, 1}2𝜅 .
1: hdrℎ B Ser28 (104, 𝑘, 0, 0, 0, 0, 0, 0) ▷ 64-bits: 'h', authenticate 𝑘 , 6 zero bytes.
2: XOF.init(hdrℎ) ▷ Add header. XOF defined in Section 2.4.2.
3: XOF.input(Ser28 (w)) ▷The w vector is serialized as bytes.
4: XOF.input(𝜇) ▷ Add the message hash.
5: return 𝑐hash B XOF.output(2𝜅) ▷ Collision resistance.

Challenge polynomial computation. ChalPoly (Algorithm 10) expands a 2𝜅-bit challenge
hash into a “ternary” polynomial with “weight”𝜔 elements: Exactly𝜔 coefficients of the resulting
𝑐poly polynomial are either +1 or −1 and the rest are zeros. The set C of such polynomials is
commonly referred to as the “challenge space”.

Internally, ChalPoly starts from an all-zero vector c of dimension 𝑛, selects pseudo-random
coefficients of c, and sets them to ±1 until the Hamming weight is 𝜔 . If a selected coefficient
is already set, then ChalPoly moves on to the next coefficient. The pseudo-randomness is ob-
tained by passing 𝑐hash into a XOF. By a coupon collector argument, the expected number of
iterations of the while loop in ChalPoly is

∑
𝑖<𝜔

𝑛
𝑛−𝑖 ≤

𝜔
1−𝜔/𝑛 . Thus its average bit consumption

is 𝜔
1−𝜔/𝑛 log𝑛, which is equivalent to 𝜔 log𝑛 when 𝜔 = 𝑜 (𝑛).
ChalPoly serves the same purpose as Dilithium’s “SampleInBall” algorithm: mapping a hash

digest to a polynomial of fixed weight. Both algorithms employ different strategies, but their
(pseudo-)randomness consumptions are similar.

Algorithm 10 ChalPoly(𝑐hash) → 𝑐poly

Input: A hash digest 𝑐hash ∈ {0, 1}2𝜅
Output: A polynomial 𝑐poly in the challenge space C
1: hdr𝑐 B Ser28 (99, 𝜔, 0, 0, 0, 0, 0, 0) ▷ 64 bits: 'c', authenticate 𝜔 .
2: XOF.init(hdr𝑐) ▷ Add header. XOF defined in Section 2.4.2.
3: XOF.input(𝑐hash) ▷ Challenge hash.
4: c = (𝑐𝑖)𝑖∈[𝑛] B 0𝑛 ▷ Initialize as a zero polynomial.
5: while ∥c∥1 ≤ 𝜔 do ▷ Less than 𝜔 non-zero coefficients.
6: 𝑏 B XOF.output(16) ▷ Squeeze two bytes from the XOF.
7: 𝑖 = Deser𝑛 (𝑏1∥ · · · ∥𝑏9) ▷ Shift 1 bit right, mask to get 0 ≤ 𝑖 < 𝑛.
8: if (𝑐𝑖 = 0) then ▷ Is this a zero coefficient?
9: 𝑐𝑖 B (−1)𝑏0 ▷The least significant bit determines sign.

10: return 𝑐poly B
∑
𝑖∈[𝑛] 𝑐𝑖 · 𝑥𝑖 ▷ Coefficients of 𝑛 − 1 degree polynomial.

2.4.7 Refresh and Decoding Gadgets

Algorithms 11 and 12 describe the refresh gadgets that can be used to achieve 𝑂 (𝑑 log𝑑) com-
plexity for the overall key generation and signing processes.

Refresh. Refresh (Algorithm 11) is used to generate a fresh 𝑑-sharing of a value in R𝑞 , or
“refresh” the 𝑑-sharing. This operation is important for security against 𝑡-probing adversaries.
Refresh uses ZeroEncoding (Algorithm 12) as a subroutine. Both algorithms perform 𝑂 (𝑑 log𝑑)
basic operations over R𝑞 and require 𝑂 (𝑑 log(𝑑) log(𝑞)) bits of entropy. While we present

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 21

ZeroEncoding as a recursive algorithm, it is easy to see that it can be computed in-place and
its memory requirement is 𝑂 (𝑑).

Algorithm 11 Refresh(⟦𝑥⟧) → ⟦𝑥⟧′

Input: A 𝑑-sharing ⟦𝑥⟧ of 𝑥 ∈ R𝑞
Output: A fresh 𝑑-sharing ⟦𝑥⟧ of 𝑥
1: ⟦𝑧⟧ ← ZeroEncoding(𝑑)
2: return ⟦𝑥⟧′ B ⟦𝑥⟧ + ⟦𝑧⟧

Algorithm 12 ZeroEncoding(𝑑) → ⟦𝑧⟧𝑑
Input: A power-of-two integer 𝑑 , a ring R𝑞
Output: A uniform 𝑑-sharing ⟦𝑧⟧ ∈ R𝑑𝑞 of 0 ∈ R𝑞
1: if 𝑑 = 1 then
2: return ⟦𝑧⟧1 B (0) ▷There is only one way to encode zero into 1 share.
3: ⟦𝑧1⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain left side.
4: ⟦𝑧2⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain right side.
5: ⟦𝑟⟧𝑑/2

𝑀←− R𝑑/2𝑞 ▷ Sampled using a Mask Random Generator (MRG).
6: ⟦𝑧1⟧𝑑/2 B ⟦𝑧1⟧𝑑/2 + ⟦𝑟⟧𝑑/2 ▷ Add to the left side.
7: ⟦𝑧2⟧𝑑/2 B ⟦𝑧2⟧𝑑/2 − ⟦𝑟⟧𝑑/2 ▷ Subtract from the right side.
8: return ⟦𝑧⟧𝑑 B

(
⟦𝑧1⟧𝑑/2 ∥ ⟦𝑧2⟧𝑑/2

)
▷ Concatenate the two.

Decoding. Decode (Algorithm 13) is a decoding gadget. We expect that the shares are re-
freshed before Decode is called. In KeyGen the Decode gadget (Line 7 of Algorithm 1) imme-
diately follows a Refresh contained as the last step of AddRepNoise (Line 7 of Algorithm 8.)
Similarly, the first instance of Decode in Sign (Line 8 of Algorithm 2) follows a AddRepNoise.
The second instance of Decode in Sign (Line 16) follows an explicit Refresh on Line 15.

Algorithm 13 Decode(⟦𝑥⟧) → 𝑥

Input: A 𝑑-sharing ⟦𝑥⟧ = (𝑥𝑖)𝑖∈[𝑑] of 𝑥 ∈ R𝑞
Output: The clear value 𝑥 ∈ R𝑞
1: return 𝑥 B

∑
𝑖∈[𝑑] 𝑥𝑖

2.5 Serialization and Deserialization

Raccoon specifies encoding formats for serializing signatures and public keys as fixed-length se-
quences of bytes (“blobs”). We recommend that these byte strings are embedded into application
formats (e.g., as OCTET STRING or BIT STRING types in ASN.1 encoded X.509 certificates) and
not dissected and re-serialized into custom formats.

Signatures (sig) and public keys (vk) at a given 𝜅 security level are interoperable: their en-
coding does not depend on the number of shares 𝑑 used in the signing process, and the verifier
does not need to know 𝑑 . Hence a single format and |sig| and |vk| byte size is given for each of
Raccoon-128 (Table 2), Raccoon-192 (Table 3), and Raccoon-256 (Table 4).

The encoding and size of the private key sk does depend on the number of shares 𝑑 , and
generally, a private key generated with a given𝑑 parameter set should also be used with a signing
process with the same parameters.

22 Raccoon

We view the storage and encoding of masked private keys to be an application-specific issue;
secret key interoperability is secondary to side-channel security considerations, which impact
secret key formatting and management techniques. The format given here was selected mainly
for the benefit of KAT testability and is not necessarily ideal for all use cases.

For strong unforgeability, we aim at having a unique representation for all quantities avail-
able to attackers; if an “invalid/alternative encoding” is discovered during deserialization, imple-
mentations must reject the entire signature or key.

2.5.1 Signature Format (sig)

TheRaccoon signature as used in Signing and Verification functions consists of three components
sig B (𝑐hash, h, z). It is encoded as a concatenation of these three elements as bit strings. While
𝑐hash is always 2𝜅 bits, a simple Huffman/unary-type entropy encoding is used to condense h and
z components as they have non-uniform, roughly Gaussian distributions.

Zero padding and length rejection. Theencoding introduces variation to the length of h and
z; however, the Raccoon signature blob is constant length |sig| as the remainder is padded with
zero bits. Over-long signatures (greater than |sig| bytes) are rejected by CheckBounds (Line 20
in Algorithm 2), the signing process is restarted, until a signature fits the length. The rejection
probability is designed to be low, with a restart rate 𝑝 < 10−4 due to signature length overflow
(See Section 2.6).

Encoding of hint h. Given the zero-dominant distribution of the hint vector (which is signed),
zeros 𝑥 = 0 are encoded directly as a single zero bit. Encoding of nonzero values starts with the
unary encoding of the absolute value: 𝑎 = abs(𝑥) as 𝑎 × 1-bits, followed by a single 0 stop bit. In
the case of 𝑥 ≠ 0, the last (highest) bit is the sign bit; 0 for 𝑥 > 0 or 1 for 𝑥 < 0.

Code Binary Hint
(0) 0b0 0
(1,0,0) 0b001 +1
(1,0,1) 0b101 −1
(1,1,0,0) 0b0011 +2
(1,1,0,1) 0b1011 −2
(1,1,1,0,0) 0b00111 +3
(1,1,1,0,1) 0b10111 −3
· · ·
(1,1,1,1,1,1,0,0) 0b00111111 +6
(1,1,1,1,1,1,0,1) 0b10111111 −6

We note that due to the little-endian interpretation of bits in serialization, a common binary rep-
resentation such as 0b1011 = 0xB is read from “right to the left” and interpreted as (1, 1, 0, 1) = −2.
The sign bit (for nonzero values) is the most significant bit and also the last bit when proceeding
in little-endian order. As an example, a stand-alone zero byte (at byte boundary) would represent
a segment of eight zero coefficients, while 0x3Fwould represent a single coefficient +6, and 0xBF
byte decodes as −6.

Encoding of response z. The distribution z is also approximately Gaussian but with a much
higher standard deviation, around 241. We first encode the low 40 bits of absolute coefficient
𝑎 = abs(𝑥) mod 240 directly as 40 bits. Then the high part 𝑏 = ⌊abs(𝑥)/240⌋ is encoded as 𝑏 × 1
bits, followed by stop bit 0, and a sign bit for nonzero values: 0 for 𝑥 > 0 and 1 for 𝑥 < 0.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 23

There is no sign bit for 𝑥 = 0: The encoding of coefficient 𝑥 = 0 for z consists of 40 bits for
𝑎 = 0 and a single 0 stop bit for unary encoding of 𝑏 = 0 (41 zero bits total, no sign bit.)

Example: Encoding a coefficient 𝑥 = −⌊240𝜋⌋ = −0x3243F6A8885 for 𝑧 yields low part
𝑎 = abs(𝑥) mod 240 = 0x243F6A8885 and high part 𝑏 = 3. If the bit encoding starts from a byte
boundary, the 45-bit encoding would be 85 88 6A 3F 24 17 where the first 5 bytes correspond
to 𝑎 (bytes in little-endian order), the hexadecimal digit 7 in the last byte is an encoding of 𝑏 =
(1, 1, 1, 0), and the final bit 44 (odd-numbered high digit in the last byte) indicates a negative sign.
The high 3 bits of the last byte 0x17 are determined by the next coefficient.

2.5.2 Public Key Format (vk)

The Raccoon public key vk B (seed, t) is a concatenation of a 𝜅-bit seed (used to generate A),
and a vector t encoded in unsigned format Ser𝑞𝑡 (t) with modulus 𝑞𝑡 = ⌊𝑞/2𝜈t⌋. Hence each
coefficient encoded into ⌈log2 𝑞𝑡 ⌉ bits. The size of the public key is (𝜅 + 𝑘𝑛(49 − 𝜈t)) bits.

2.5.3 Secret Keys (sk) in the Reference Implementation

Warning. A masked secret key can’t be treated as a static key. For secure usage, one needs to
refresh the masked encoding of the ⟦s⟧ secret key component every time it is used, even though
the (decoded) key itself remains the same. There are solutions based on masked symmetric cryp-
tography such as “WrapQ” [Saa23] that allow fixed key re-use and which have a comparable
encoding size to the secret key serialization used in the reference implementation.

Description and rationale. The main purpose of this format is to support the NIST API and
Known Answer Test (KAT) testing functionality. During serialization these functions produce
a unique masking serialization for a given ⟦s⟧ depending on the state of the RBG(s) only; an
implementation can use an arbitraryMRG (See Section 2.8) and still havematching KATswithout
having to store the secret key in a completely insecure decoded format.

Due to NIST API conventions, the public key vk is not separately available for the signing
process but is duplicated in the secret key sk = (vk, ⟦s⟧𝑐). The public values vk = (seed, t) are
decoded from the beginning of the secret key blob as described in Section 2.5.2.

Note that the secret key vector is encoded in NTT transformed domain ⟦ŝ⟧ (See Section 2.7.1).
The reference implementation uses MaskCompress (Algorithm 14) to serialize (export) secret
keys ⟦ŝ⟧ into ⟦ŝ⟧𝑐 and MaskDecompress (Algorithm 15) to deserialize (import) them back from
⟦ŝ⟧𝑐 to ⟦ŝ⟧. Different real use cases may wish to use different types of secret key encodings for
additional protection of masking security.

The secret key consists of (𝑑 − 1) symmetric keys 𝑧𝑖 ∈ {0, 1}𝜅 , followed by a single share x of
ℓ polynomials, encoded in bit-packed format Ser𝑞 (x). The encoded ⟦ŝ⟧𝑐 size is hence (𝑑 − 1)𝜅 +
ℓ𝑛⌈log2 𝑞⌉ bits.

Note on key management APIs in high-assurance cryptography. Refreshing of ⟦ŝ⟧ be-
tween consecutive signature calls is impossible with the API used by the NIST Reference Imple-
mentation. APIs in high-assurance implementations avoid passing secret variables directly but
operate on them via opaque “handles.” These abstract references don’t necessarily contain key
material; they allow secure keymanagement to be performed in an implementation-specific man-
ner behind the scenes. Examples of such abstractions include the key identifier psa_key_id_t
in ARM Platform Security Architecture (PSA) Crypto API [ARM22] and TEE_ObjectHandle in
GlobalPlatform Trusted Execution Environment (TEE) Crypto API [Glo21].

24 Raccoon

Algorithm 14 MaskCompress(⟦s⟧) → ⟦s⟧𝑐
Input: Shares ⟦s⟧ ∈ (Rℓ𝑞)𝑑 = (s0, s1, · · · , s𝑑−1) with s𝑖 ∈ Rℓ𝑞 .
Output: Serialized ⟦s⟧𝑐 = (𝑧1, 𝑧2, · · · , 𝑧𝑑−1, x) with 𝑧𝑖 ∈ {0, 1}𝜅 and x ∈ Rℓ𝑞 .
1: x B s0 ▷ First share of ⟦s⟧.
2: for 𝑖 ∈ {1, 2, . . . , 𝑑 − 1} do
3: 𝑧𝑖 ← {0, 1}𝜅 ▷ Random seed for share 𝑖 .
4: for 𝑗 ∈ [ℓ] do ▷ Sample vector r ∈ Rℓ𝑞 using key 𝑧𝑖 .
5: hdr𝐾 B Ser28 (75, 𝑖, 𝑗, 0, 0, 0, 0, 0) ▷ 64 bits: 'K', share, index, padding.
6: r𝑗 B SampleQ(hdr𝐾 , 𝑧𝑖) ▷ Sample uniform polynomial.
7: x B x − r ▷ Update x with new share r = (r𝑗) 𝑗∈[ℓ] .
8: x B x + s𝑖 ▷ Update x with old share s𝑖 .
9: return ⟦s⟧𝑐 B (𝑧1, 𝑧2, · · · , 𝑧𝑑−1, x)

Algorithm 15 MaskDecompress(⟦s⟧𝑐) → ⟦s⟧
Input: Serialized ⟦s⟧𝑐 = (𝑧1, 𝑧2, · · · , 𝑧𝑑−1, x) with 𝑧𝑖 ∈ {0, 1}𝜅 and x ∈ Rℓ𝑞 .
Output: Shares ⟦s⟧ ∈ (Rℓ𝑞)𝑑 = (s0, s1, · · · , s𝑑−1) with s𝑖 ∈ Rℓ𝑞 .
1: s0 B x ▷ Used as-is.
2: for 𝑖 ∈ {1, 2, . . . , 𝑑 − 1} do ▷ Expand other shares.
3: for 𝑗 ∈ [ℓ] do ▷ Sample vector s𝑖 ∈ Rℓ𝑞 using key 𝑧𝑖 .
4: hdr𝐾 B Ser28 (75, 𝑖, 𝑗, 0, 0, 0, 0, 0) ▷ 64 bits: 'K', share, index, padding.
5: s𝑖, 𝑗 B SampleQ(hdr𝐾 , 𝑧𝑖) ▷ Expand uniform share using 𝑧𝑖 .
6: return ⟦s⟧ B (s0, s1, · · · , s𝑑−1)

2.6 Provenance of Rejection Bounds

The Raccoon CheckBounds function (Section 2.4.4) verifies that the signature fits into a fixed
space |sig| (in signing) or that it is not otherwise malformed or manipulated (in verification.)

Even though Raccoon has a rejection condition in signature generation (CheckBounds on
Line 20 in Algorithm 2), the security of Raccoon does not directly depend on “rejection sampling”
during the signing phase – which is the purpose of similar bounds with Dilithium.

Instead, the bounds 𝐵2
2 and 𝐵∞ can be seen as an attack countermeasure for the signature

verification phase (Line 2 in Algorithm 3). These bounds are merely confirmed in signing so that
invalid signatures are not generated.

Consequently, the input variables of CheckBounds can be considered as “already public”,
and implementing CheckBounds in the signature generation phase does not require special side-
channel countermeasures.

2.6.1 Signature Field Size |sig|

We observe that the h and z coefficients have a roughly Gaussian distribution and are encoded
with Huffman-type variable-length encoding (Section 2.5.1). As a sum of a relatively large num-
ber of independent random variables with static distributions, the actual encoded length of a
Raccoon signature sig B (𝑐hash, h, z) will also have a roughly Gaussian distribution.

We wanted the scheme to have a fixed signature length but a low rejection rate due to “sig-
nature too long” (encoding not fitting the signature field.) The field size was determined exper-
imentally: We approximated the length average 𝜇 |sig | and standard deviation 𝜎 |sig | from 1000

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 25

signatures at each parameter set. The signature field size was set four standard deviations from
average at 𝜇 |sig | + 4 · 𝜎 |sig | , rounded up to next even number (multiple of two bytes.)

• Raccoon-128: |sig| = 11524 bytes (from 11490.3 + 4 · 8.26)

• Raccoon-192: |sig| = 14544 bytes (from 14502.9 + 4 · 10.19)

• Raccoon-256: |sig| = 20330 bytes (from 20280.8 + 4 · 12.18)

The one-sided tail of a normal distribution at 𝜎 = 4 is 1√
2𝜋

∫ ∞
𝑥=4

𝑒−𝑥
2/2 ≈ 3.17 · 10−5, so we can

expect that rejections occur (due to insufficient signature space) with a rate < 10−4.

2.6.2 Scaled Squared Norm 2−64𝑩2
2 and Infinity Norm 𝑩∞

We now discuss how we compute the bounds 𝐵2
2 and 𝐵∞ for the (squared) 𝐿2 (Euclidean) and 𝐿∞

(infinity) norms. Remember that (z, h) is of this form:

(z, h) =
(
𝑐 · s + r, ⌊w⌉𝜈w − ⌊u − 𝑐 · e − 𝑐 · 𝜹t − e

′⌉𝜈w
)
,

Under mild heuristics, we approximate the expected value of the squared Euclidean norm
∥(z, 2𝜈wh)∥2 as:

𝛽noRm B 𝑛
[
(𝑘 + ℓ)𝑑 · rep

12

(
22𝑢w + 𝜔 22𝑢t

)︸ ︷︷ ︸
Additive errors

+𝑘
(
22𝜈w

6
+ 𝜔 22𝜈t

12

)
︸ ︷︷ ︸

Rounding

]
. (7)

While the approximation Eq. (7) is no longer true if 𝜈w, 𝜈t are too large, it closely matches our
experiments for the parameter sets considered in this document. From Eq. (7) we derive bounds
for 𝐵2

2 and 𝐵∞, for each variant Raccoon-𝜅 by Eqs. (8) and (9).

2−64𝐵2
2 B

⌊
1.2

𝛽noRm
264

⌋
(8)

𝐵∞ B
⌊
6 ·

√
1

𝑛(𝑘 + ℓ) 𝛽noRm
⌋

(9)

These bound selections result in 𝑝 > 0.999 overall acceptance rate in signing. The choice
of the constants 1.2 and 6 in Eqs. (8) and (9) is motivated by heuristically treating (z, 2𝜈wh) as a
Gaussian vector and using Gaussian tail bounds, e.g. [Lyu12, Lemma 4.4].

2.7 Number Theoretic Transforms

Like many lattice-based schemes, Raccoon implementations use Number Theoretic Transforms
(NTT) to implement multiplication in the ring R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1). The use of the specific
NTT techniques discussed in this section is optional with Raccoon in the sense that the public
keys and signatures are compatible even if ring multiplication is implemented in some other
way (public keys or signatures do not contain NTT-domain quantities). However, producing
test vectors deterministically that match the reference implementation requires a compatible
NTT implementation, and the reference implementation uses the NTT domain for secret key
encoding.

26 Raccoon

2.7.1 NTT Conventions

We use the “hat” (̂) to denote transformed ring elements; 𝑓 = (𝑓0, 𝑓1, · · · 𝑓𝑛−1) is a vector of 𝑛
element 𝑓𝑖 ∈ Z𝑞 , just like the polynomial coefficients of 𝑓 (𝑥) = ∑𝑛−1

𝑖=0 𝑓𝑖 𝑥
𝑖 . For forward and

inverse transforms we have 𝑓 = NTT(𝑓), 𝑓 = NTT−1(𝑓). Polynomial multiplication 𝑓 𝑔 mod
(𝑥𝑛+1) satisfies 𝑓 𝑔 = NTT−1(𝑓 ⊙𝑔), where the NTT domain (pointwise) multiplication operation
ℎ̂ = 𝑓 ⊙ 𝑔 in multiplies vector elements individually: ℎ̂𝑖 = 𝑓𝑖 𝑓𝑖 .

Mathematically Raccoon’s forward NTT transform evaluates a polynomial 𝑓 (𝑥) at 𝑛 roots
of unity; specially selected points 𝑧𝑖 ∈ Z𝑞 that satisfy 𝑧2𝑛 ≡ 1 (mod 𝑞). Each evaluation point
𝑓𝑖 = 𝑓 (𝑧𝑖) is an odd power of a subgroup generator 𝑧0 = 𝑔. To facilitate in-place implementation
techniques, the order of these points is “bit-reversed”: Let rev(𝑏) = ∑8

𝑖=0 2
8−𝑖 (⌊2−𝑖𝑏⌋ mod 2). We

have 𝑧𝑖 = 𝑔2rev(𝑖)+1(mod 𝑞) for 0 ≤ 𝑖 < 𝑛. Conversely, the inverse operation NTT−1 determines
a unique (“interpolation”) polynomial 𝑓 that satisfies 𝑓𝑖 =

∑𝑛−1
𝑗=0 𝑓𝑗 𝑧

𝑗
𝑖 for all 𝑓𝑖 , 0 ≤ 𝑖 < 𝑛.

Thanks to the special properties of 𝑧𝑖 roots of unity, both NTTand NTT−1can be computed
in 𝑂 (𝑛 log𝑛) arithmetic operations, while the 𝑓 ⊙ 𝑔 pointwise multiplication is 𝑂 (𝑛). Hence
the overall complexity of NTT-based multiplication 𝑓 𝑔 = NTT−1(NTT(𝑓) ⊙ NTT(𝑔)) is also
𝑂 (𝑛 log𝑛), compared to quadratic complexity 𝑂 (𝑛2) of more straightforward methods.

2.7.2 Provenance of Modulus 𝒒 and Tweak Constants

The 49-bit Raccoon modulus 𝑞 = 549824583172097 is a composite number 𝑞 = 𝑞1 𝑞2 consisting
of two primes: 24-bit 𝑞1 = 16515073 = 224 − 218 + 1 and 25-bit 𝑞2 = 33292289 = 225 − 218 + 1.
Since both multiplicative orders 𝑞1−1 and 𝑞2−1 are divisible by a large power-of-two (218 ≥ 2𝑛),
sufficient roots of unity are available for NTT. NTT can be computed either with composite mod-
ulus (mod 𝑞), which is suitable for common 64-bit architectures, or separately (mod 𝑞1) and
(mod 𝑞2) with 32-bit multipliers. The latter “CRT” (Chinese Remainder Theorem) NTT option
may be preferable with some 32-bit microcontroller targets but also with vector/SIMD architec-
tures that only have parallel 32-bit integer multipliers.

The “subgroup generator” 𝑔 = 358453792785495 was selected the following way: We first
find the smallest number 𝑥 > 1 that is simultaneously a generator of full multiplicative groups
Z∗𝑞1 and Z

∗
𝑞2 : this is 𝑥 = 15. We then determine its multiplicative order in composite Z∗𝑞 ; smallest

𝑚 with 𝑥𝑚 ≡ 1 (mod 𝑞) is 𝑚 = lcm(𝑞1 − 1, 𝑞2 − 1) = 2097414144. The 2𝑛:th root of unity 𝑔 is
derived as 𝑔 = 𝑥𝑚/(2𝑛) (mod 𝑞) = 358453792785495.

Note that all odd powers 𝑔2𝑖+1 also have order 2𝑛 modulo both 𝑞1 and 𝑞2; this is a required
property for “negacyclic” convolutions in ring R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1). (For “cyclic” convolutions
required for Z𝑞 [𝑥]/(𝑥𝑛 − 1) multiplication, one would choose 𝑧𝑖 from 𝑛:th roots of unity.)

2.7.3 Sampling into the NTT Domain

The result of ExpandA (Algorithm 6) also requires a forward NTT transform before pointwise
multiplication, even though it is uniform inR𝑞 (the NTT transform does not alter its distribution).
This is so that signing and verification functions can be interoperable regardless of the details of
the polynomial multiplication implementation (In the case of NTT:The root of unity, ordering of
coefficients in the transformed domain, Montgomery reduction, etc.) The relative performance
penalty of this technically unnecessary transformation is relatively small.

Functions ChalPoly (Algorithm 10) and SampleU (Algorithm 7) create specific distribution in
the “normal” R𝑞 polynomial representation domain. If NTT-based ring multiplication is imple-
mented, these require a forward NTT transformation before pointwise multiplication.

However, the secret key ⟦ŝ⟧ serialization and deserialization processes (Algorithms 14 and 15)
used in the reference implementation operate in the NTT domain. If serialization of secret keys

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 27

is performed in the NTT domain, then they can only be loaded and used by an implementation
with a compatible NTT representation.

2.8 RBGs for Secret Key Bits and MRBGs for Masking Bits

We write 𝑥 ← {0, 1}𝜅 to denote a call to a secure sampling of 𝜅 random bits. In NIST cryptog-
raphy, all secret key material is generated with Random Bit Generators (RBGs). FIPS-compliant
implementations are expected to use approved methods described in the SP 800-90 series of pub-
lications [BK15, TBK+18, BKM+22] for generating secret key bits.

Raccoon uses random bits relatively sparingly, expanding short seeds with an XOF. Only uni-
form distributions are used in Raccoon, so straightforward rejection samplers suffice to translate
random bits to these target distributions.

2.8.1 Random Bit Generators (RBGs)

The NIST standards support Deterministic Random Bit Generators (DRBGs [BK15]) for secret
key generation in most applications. DRBGs are more problematic than physical “True” random
number generators such as RBG3 [BKM+22] from the viewpoint of masking theory and prac-
tice. For a theoretical treatment of deterministic or semi-deterministic generators in the probing
model, it may be helpful to consider that there exist 𝑑 independent random bit generators RBG𝑖 ,
at least one for each share. Implementors will need to consider various approaches to facilitate
both testability and side-channel security.

The RBG1 construction of SP 800-90C 3pd [BKM+22] is intended for devices that don’t have
an internal randomness source; it is difficult to see how such a device can maintain side-channel
security in the long term. RBG2 (which combines a physical entropy source with determinis-
tic generation) may succeed if the entropy source and the symmetric mixing components are
implemented carefully. Instantiation of Raccoon with the RBG3 “full entropy” construction is
recommended: It has the advantage of using a large amount of true entropy to produce each
seed output, making them uncorrelated even under a very powerful side-channel adversary.

Limitations of the Reference Implementation and the NIST API. For cryptographic ran-
domness, the reference implementationmakes calls to the NIST-definedAPI randombytes() func-
tion, which represents an abstract RBG. This approach is only appropriate to facilitate Known
Answer Test (KAT) generation and verification.

2.8.2 Masking Random Generators (MRGs)

The masking countermeasures also require randomness. Its purpose is to make it more diffi-
cult for an attacker to determine the algorithm’s secret variables from side-channel observations.
Masking randomness is distinct from secret key material as its security requirements are deter-
mined by the physical attack model rather than purely cryptanalytic factors. We term these
generators as Masking Random Generators (MRG) and write 𝑥 𝑀←− D to denote that an MRG
suffices to sample 𝑥 from D (or some other distribution – different MRGs may be appropriate
for different distributions.)

RBGs and MRGs are orthogonal in the sense that the scheme remains secure against purely
cryptanalytic (non-side channel) attacks even if an attacker compromises all MRG-generated
randomness but somehow none of the RBG-generatedmaterial. In Raccoon, themasking random
number generators have no effect on the actual secret key or signature generated; the secure
RBG entirely determines those. Hence the implementation details of masking randomness do
not affect high-level test vectors (albeit they do affect intermediate values).

28 Raccoon

The reference implementations use placeholder generators asMRGs to facilitate testing; these
should not be viewed as a part of Raccoon itself. Implementors should use more appropriate
generators in “real life” than the placeholder MRGs contained in the reference implementations.

2.9 Known Answer Tests (KATs)

The electronic submission package contains 18 Known Answer Test (KAT) sets, each with 100
test vectors. These are in the .rsp format generated by the NIST-provided KAT generator called
PQCgenKAT_sign.c. Note that generated files PQCsignKAT_X.rsp have secret key size as their
index X; see Tables 2 to 4 for values of |sk|.

SHA-256 hashes of the generated 100-KAT files PQCsignKAT_|sk|.rsp:

Raccoon-128-1: 039383b9d9b29c5a9cda63cb93666771c7c09791afaadc941341e0df670229e0
Raccoon-128-2: 71586c2fd1ae47f17cb5c44c2b5351ab48531344041a76357ffc695098d2506c
Raccoon-128-4: ae6e775feaf9d26eac5d10bec3c742fb7ab8f6716ee96a2ce3cf2c3aa23b8ef0
Raccoon-128-8: ffbd4df642d15da96624e2b8489b5303a97a7f6a5d60416c72108880746394ea
Raccoon-128-16: 579fbaafde26049c4f4993b28568abfb657da76e5cd0c7a83239e37d4cc43325
Raccoon-128-32: dff454bf03e9c027d70d4443bb394cae3c5af23ed81179889a62bf98a8a916d8
Raccoon-192-1: bb577467a15ff20d6ac88c3eb7ba3fd6b3a3e7bf8e5bc627890bb027bba8bda5
Raccoon-192-2: 1543992c77e4a3ee08cd93daf1044e2d7816efbb6c572f167e500ee5b6e68d02
Raccoon-192-4: 82f2b834889bacdbcbb48d51f99c15639a235a764714ba858b415fdf546c9dbc
Raccoon-192-8: b21ecba12cafa88a8337a813e9dac131a50f043f860241f7cd36f8b502233971
Raccoon-192-16: 57e3c6d014c7283806f4cd3d9c83737c6d381202a1649042c499c5c354f7606b
Raccoon-192-32: 49a552559d6a68175996de373232e0863496834c16b4d2772781f0e01469b621
Raccoon-256-1: 031d4976f4c09b90ecec5c535b5ab3bcb020b9cb4f95e17dfdcedb10de1425fc
Raccoon-256-2: 8936afaf3fd6cf5b43716e006977e1c14a2624913bfd23adb850aa141ef2ae91
Raccoon-256-4: 2e3ae8a29435ce8621a98390874fa2193756c87741f02934018650163c57e369
Raccoon-256-8: 893bf614327740610c29781db7973bbfa7069010039bfa9b2ba02a9a675a78ab
Raccoon-256-16: 663ce05beb35184b0012e638ed8c918f945b379a9bd35a97e37141798c320acf
Raccoon-256-32: 594169ee1ddc6238fbbfae0178d0ed8fab9eb0205066fe382f6ff788c775bd58

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 29

3 Performance Analysis

Quasilinearmasking. While demonstrating good performance at each cryptanalytic security
level 𝜅 ∈ {128, 192, 256}, a key feature of Raccoon is the 𝑂 (𝑑 log𝑑) complexity of its masking;
performance at each side-channel security level 𝑑 ∈ {1, 2, 4, 8, 16, 32}. Quasilinear masking cre-
ates a significant advantage in favor of side-channel defense since side-channel attacks (with
realistic “noisy measurements”) have been shown to have exponential asymptotics in relation to
the number of shares 𝑑 and the masking order 𝑑 − 1.

In pioneering work, Chari et al. [CJRR99] showed that in the presence of Gaussian noise,
the number of side-channel observations required to determine a masked secret value grows
exponentially with the masking order 𝑑 − 1. The understanding of this exponential relationship
has since been made more precise both theoretically and in practice [DFS19, MRS22, IUH22].

Hence we suggest that Raccoon is compared against signature algorithms and implementa-
tions that support masking (or other sufficiently robust side-channel attack countermeasures.)
Finding such comparison data for other PQC Signature schemes is difficult as most have not been
designed to directly support side-channel countermeasures.

3.1 General Implementation Characteristics

Since the building blocks of Raccoon greatly resemble those of Dilithium, very similar imple-
mentation and optimization strategies can be used. Especially when the 32-bit “CRT” arithmetic
option (Section 2.7.2) is used, NTT code for Raccoon is essentially equivalent to that of Dilithium
on bothmicrocontroller and high-end SIMD targets. TheKeccak computations can be parallelized
similarly on SIMD targets (Section 2.4.3).

3.2 Performance on the NIST x64 Reference Platform

We emphasize that even though Raccoon is designed for various masking levels, a portable, com-
pletely deterministic reference implementation can’t have a realistic expectation of high side-
channel security. In addition to limitations related to random numbers (Section 2.8.1), the ref-
erence implementation is severely limited in its key management (Section 2.5.3), and overall
leakage characteristics (due to high-level programming language used, and other factors.)

However, indicative performance characteristics in relation to other schemes can be evalu-
ated this way, as well as the impact of 𝑑 and various other implementation options. Table 5
and Figure 3 summarize the results. Performance is given in milliseconds and millions of cycles,
while memory usage is indicated with the static stack usage of the core function (in bytes.) These
apply only to the reference implementation; different speed/memory tradeoffs and much lower
memory usage has been attained in size-optimized implementations (Section 3.3.2.)

3.2.1 Description of the Reference Implementation

The functional reference implementation3 is written in ANSI C for the x64 NIST reference plat-
form. This implementation is self-contained apart from the NIST KAT generation code, which
uses an AES implementation from OpenSSL to implement a deterministic random bit generator.
The total size of the implementation is roughly 5000 LOC. This includes the Keccak permutation
(for SHAKE256), also in ANSI C language, and some other optional components.

For (mod 𝑞) modular arithmetic, the implementation uses Montgomery reduction (the NTT
code avoids some of these reduction steps with the “lazy reduction” technique.) The code also

3Current version of the reference code is available from: https://github.com/masksign/raccoon

https://github.com/masksign/raccoon

30 Raccoon

Table 5: Performance of the Raccoon reference implementation on an Intel PC (Section 3.2.2).
Units: ms = milliseconds, Mclk = millions of clock cycles, stack = stack usage in bytes.

Variant KeyGen Sign Verify
𝜅-𝑑 ms Mclk stack ms Mclk stack ms Mclk stack
128-1 1.000 2.112 24784 2.281 4.817 155952 0.832 1.757 53488
128-2 1.242 2.624 24800 2.563 5.412 180560 = = =
128-4 1.646 3.477 33040 3.061 6.465 229776 = = =
128-8 4.457 9.413 49472 8.361 17.658 328144 = = =
128-16 6.156 13.001 152048 10.695 22.588 529008 = = =
128-32 19.829 41.879 283360 35.104 74.140 922480 = = =
192-1 1.540 3.252 28896 3.248 6.860 233808 1.309 2.764 65776
192-2 1.872 3.953 28928 3.644 7.697 262512 = = =
192-4 2.415 5.101 37152 4.292 9.064 319904 = = =
192-8 6.282 13.268 53600 11.410 24.099 434672 = = =
192-16 8.542 18.041 156160 14.476 30.574 668288 = = =
192-32 26.451 55.866 287472 46.867 98.984 1127296 = = =
256-1 2.462 5.199 37088 4.764 10.062 373072 2.156 4.554 82176
256-2 2.926 6.180 37120 5.266 11.123 409968 = = =
256-4 3.699 7.811 45344 6.238 13.174 483744 = = =
256-8 8.870 18.734 61792 15.830 33.433 631280 = = =
256-16 12.149 25.659 164352 20.233 42.732 930432 = = =
256-32 36.587 77.272 295664 63.972 135.111 1520512 = = =

includes a compile-time macro option for 32-bit “Chinese Remainder Theorem” arithmetic (Sec-
tion 2.7.2), mainly to demonstrate how this technique can be used.

For evaluation purposes, two different alternative MRG implementations are provided; a fast
MRGbased on a 127-bit LFSR and a second one based on theAscon [DEMS21] permutation. These
can be used to study how the MRG performance impacts the overall performance of Raccoon.
Even though the MRGs run in an entirely predictable, deterministic fashion and hence are not
actually secure, the interfaces allow multiple independent instances of these generators to be
used (an additional measure for probing security.)

3.2.2 Benchmarking Details

Themeasurements in Table 5 were made using the ANSI C Reference Implementation on Dell Op-
tiPlex XE4, a mid-range 2022 desktop system with an Intel Core i7-12700 CPU running at 2.1gHz.
The test programs were executed on a single CPU thread with frequency scaling disabled. The
system had 64GB of physical RAM and was running Ubuntu 22.04.2 LTS Linux operating system.
TheC test code was compiled with gcc 11.3.0 packaged in that operating system. No SIMD/Vector
(AVX2 or similar) intrinsics or assembly-level optimizations were used. Compilation and opti-
mization flags were -Wall -Wextra -Ofast -march=native.

The test program uses the NIST API calls crypto_sign_keypair(), crypto_sign(), and
crypto_sign_open(). Processor time was measured with clock() POSIX call (for milliseconds)
and with rdtsc inline instruction (for cycles.) 64-bit integer arithmetic and the LFSR127-based
Masking Random Generator was used. Stack frame size (indicating memory usage) for core func-
tions was obtained with the -fstack-usage compile-time option.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 31

12 4 8 16 32
0

10

20

ms

0

100

200

300
kB

(a) KeyGen (NIST Level I)

12 4 8 16 32
0

10

20

30

ms

200

400

600

800

kB

(b) Sign (NIST Level I)

12 4 8 16 32
0

10

20

ms

100

200

300
kB

(c) KeyGen (NIST Level III)

12 4 8 16 32
0

20

40

ms

500

1,000

kB

(d) Sign (NIST Level III)

12 4 8 16 32
0

10

20

30

40
ms

100

200

300

kB

(e) KeyGen (NIST Level V)

12 4 8 16 32
0

20

40

60

ms

500

1,000

1,500

kB

(f) Sign (NIST Level V)

Figure 3: Reference implementation running time in milliseconds (, scale on the right side)
and stack usage in kilobytes (, scale on the left side) as functions of the number of shares
𝑑 ∈ {1, 2, 4, 8, 16, 32}, for KeyGen (Algorithm 1) and Sign (Algorithm 2), for NIST levels {I, III, V}.

3.3 Hardware Architectures

Several versions of Raccoon were implemented on FPGA hardware during its development pro-
cess; one is reported in [dPPRS23]. The current version is being implemented for ASIC.

These implementations contain a RISC-V controller, a Keccak accelerator, and a lattice unit
with direct memory access via a 64-bit interface. The lattice unit has hard-coded support for
Raccoon’s mod 𝑞 arithmetic. The architecture implements modular multipliers with a fixed-
modulus reduction circuit. All variants of Raccoon utilize the same modulus 𝑞, allowing “hard-
coded” reduction circuitry to be used to implement them all. The unit can perform arbitrary-
length vector arithmetic operations such as polynomial addition, coefficient multiplication, and
NTT butterfly operations. It also supports Boolean operations and shifts on arrays of words.

32 Raccoon

Table 6: Raccoon (IEEE SP23 Version [dPPRS23]) hardware implementation cycle counts at var-
ious side-channel security levels. The device also supported two-share Dilithium; first-order
masking was the highest attainable with the design, but we note that Dilithium2 with 2 shares
is already slower than Raccoon-128 with 8 shares.

Algorithm Shares KeyGen() Sign() Verify()
Raccoon-128 𝑑 = 2 1,366,000 2,402,000 1,438,000
Raccoon-128 𝑑 = 4 2,945,000 3,714,230 1,433,034
Raccoon-128 𝑑 = 8 6,100,000 6,345,000 1,389,000
Raccoon-128 𝑑 = 16 12,413,000 11,605,000 1,389,000
Raccoon-128 𝑑 = 32 25,073,000 22,160,000 1,393,000
Dilithium2 𝑑 = 1 572,000 3,102,000 510,000
Dilithium3 𝑑 = 1 886,000 5,010,000 725,000
Dilithium5 𝑑 = 1 1,399,000 5,889,000 1,174,000
Dilithium2 𝑑 = 2 1,633,000 7,866,000 510,000
Dilithium3 𝑑 = 2 2,538,000 12,326,000 725,000
Dilithium5 𝑑 = 2 3,389,000 13,489,000 1,174,000

Since the implementation is designed for side-channel security and masking, the circuitry
also has a fast “random fill” MRG function that generates non-deterministic masking randomness
rapidly. In a production implementation, this function requires special attention to guarantee
that the randomness used in each share is genuinely independent.

3.3.1 XOF Samplers in Hardware

Crucially, the hardware implementation can directly perform streaming SHAKE output and mod
𝑞 sampling to implement SampleU and SampleQ. Since a full Keccak round is implemented in
hardware, it produces output at a very high rate, theoretically a full block (136 bytes for SHAKE-
256) every 24 cycles, directly filling arrays in memory.

The hardware XOF sampler eliminates perhaps the most significant performance bottleneck
in microcontroller lattice-based PQC implementations: It was initially intended to generate the
𝑘 × ℓ polynomial matrix A on the fly with ExpandA (Algorithm 6) in key generation and ver-
ification functions. However, in the present implementation, it is also used for AddRepNoise
(Algorithm 8), and is also used with MaskCompress and MaskDecompress.

3.3.2 Mask Compression Techniques to Reduce Memory

Hardware implementations of Raccoon may use different types of masking gadgets and imple-
mentation techniques to achieve the desired performance, size, and security trade-offs. Our pro-
totype implementations utilize mask compression gadgets (analogous to Algorithms 14 and 15)
to reduce the amount of working memory required at higher masking orders. There is a trade-off
between memory saving and performance, but even at 𝑑 = 32, the Raccoon-128 implementation
operated well with 128 kB of SRAM, while at least 2000 kB would have been required without
compression. The (externally stored) secret key ⟦s⟧ size also shrunk from 392 kB to 13 kB, which
is essential as non-volatile storage can be more scarce than working memory.

3.3.3 Size and Performance

On an XC7A100T (Xilinx Artix 7) FPGA target, this size-optimized design (including a control
Core, Keccak unit, lattice coprocessor, masking random number generator, and communication

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 33

peripherals) was 10,638 Slice LUTs (16.78%), 4,140 Slice registers / Flip Flops, (3.26%) and only 3
DSPs (as logic was used for multipliers – the design is ASIC-oriented). The design was rated for
78.3 MHz. Table 6 summarizes its performance at various masking levels. We note that some
design changes have been made to Raccoon since the publication of [dPPRS23], so these results
are merely indicative.

3.4 Leakage Assessments and Vulnerability Analysis

We performed leakage assessments on the FPGA implementations (Section 3.3), following the
general test procedure of ISO 17825:2022 [ISO23] and the tools of ISO 20085 [ISO19, ISO20]. This
“TVLA” type random-vs-fixed test was adapted to detect leakage from ⟦s⟧ in the signature gener-
ation function. The ISO 17825 testing procedure is generally limited to first-order leakage; hence,
a 𝑑 = 2 version of Raccoon was used. At 𝑁 = 200, 000 traces, the maximum 𝑡-value was 4.89
[dPPRS23] – no leakage was detected.

We note that ISO 17825 is referenced as an approved non-invasive attack mitigation test metric
in Annex F of the current ISO/IEC 19790:2022 Working Draft [ISO22], and hence the most likely
testing method to be adopted for FIPS 140-3.

When evaluated under the Common Criteria methodology, high-assurance cryptographic
implementations are often required to undergo AVA_VAN.5, Advanced methodical vulnerability
analysis [Cri22]. Security against higher-order DPA – and other more advanced attacks where
higher-order masking is an effective countermeasure – are assessed and required in these evalu-
ations [SOG22].

34 Raccoon

4 Security Analysis

This section performs a security analysis of Raccoon. We first provide a black-box security re-
duction in Section 4.1. Then we argue in Section 4.2 that the impact of a 𝑡-probing adversary on
the security of Raccoon is small. Based on these two sections, Section 4.3 estimates the concrete
security of Raccoon based on state-of-the-art techniques. Finally, Section 4.4 discusses additional
security notions.

4.1 Black-box Security Reduction

4.1.1 Hardness Assumptions

We first recall twowell-known hardness assumptions over lattices: the MLWE and MSIS assump-
tions.

Definition 1 (MLWE). Let ℓ, 𝑘, 𝑞 be integers, and D be a probability distribution over R𝑞 . The
advantage of an adversary A against the Module Learning with Errors MLWE𝑞,ℓ,𝑘,D problem is
defined as follows:

AdvMLWE
A (𝜅) = |Pr [1← A(A,A · s + e)] − Pr [1← A(A, b)] | ,

where (A, b, s, e) ← R𝑘×ℓ𝑞 × R𝑘𝑞 × Dℓ × D𝑘 . The MLWE𝑞,ℓ,𝑘,D assumption states that any efficient
adversary A against this problem has negligible advantage.

Definition 2 (MSIS). Let ℓ, 𝑘, 𝑞 be integers and 𝛽 > 0 a real number. The advantage of an adversary
A against the Module Short Integer Solution MSIS𝑞,ℓ,𝑘,𝛽 problem is defined as follows:

AdvMSIS
A (𝜅) = Pr

[
A← R𝑘×ℓ𝑞 , s← A(A) : 0 < ∥s∥2 ≤ 𝛽 ∧

[
A | I

]
· s = 0 mod 𝑞

]
.

The MSIS𝑞,ℓ,𝑘,𝛽 assumption states that any efficient adversary A has negligible advantage.

In this work, we further rely on the self-target MSIS (SelfTargetMSIS) problem [DKL+18a,
KLS18]. This is a variant of the standard MSIS problem, where the problem is defined relative to
some hash function modeled as a random oracle. Following a standard proof using the forking
lemma [FS87, BN06], when the range of the hash function is exponentially large, SelfTargetMSIS
is shown to be as hard as MSIS in the random oracle model.4 In our work, we directly work with
SelfTargetMSIS instead since it allows for a simpler proof compared to using MSIS, while putting
a focus on concrete security, ignoring the reduction loss incurred by the forking lemma. Indeed,
SelfTargetMSIS also underlies the hardness of the signature scheme Dilithium [DKL+18a], re-
cently selected by NIST for standardization, and widely understood to be as concretely secure as
MSIS. Formally, SelfTargetMSIS is defined as follows. The concrete hardness of SelfTargetMSIS
is analyzed in Section 4.3.5. For completeness, we include more details on the asymptotic hard-
ness of SelfTargetMSIS in Appendix C.1 showing how bit dropping (i.e., ⌊·⌉𝑣) interplays with the
norm bound 𝛽 below.

Definition 3 (SelfTargetMSIS). Let ℓ, 𝑘, 𝑞, 𝜈 be integers such that 𝑘 < ℓ , and 𝛽 > 0 a real number.
Let C be a subset of R𝑞 and let G : R𝑘𝑞𝜈 × {0, 1}2𝜅 → C be a cryptographic hash function modeled
as a random oracle, where 𝑞𝜈 B ⌊𝑞/2𝜈⌋. The advantage of an adversary A against the Self Target
MSIS problem, noted SelfTargetMSIS𝑞,ℓ,𝑘,𝐶,𝜈,𝛽 , is defined as:

4Aswith any invocation of the forking lemma, the reduction comes with a reduction loss dependent on the number
of random oracle queries the adversary performs. We note the reduction loss can be tuned using alternative forking
strategies [MR02, OO98, PS00].

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 35

·10−2

𝑇ℓ 𝑆ℓ 𝐻 𝑆𝑟 𝑇𝑟

𝑃
𝑄

Figure 4: Two copies of 𝑃{𝑛=15,𝑡=8} , shifted by an offset 𝑐 = 5. The areas 𝑇ℓ , 𝑆ℓ , 𝐻, 𝑆𝑟 and 𝑇𝑟 relate
to a proof in Appendix A.2

AdvSelfTargetMSIS
A (𝜅) = Pr

[
A← R𝑘×ℓ𝑞 , (msg, s, h) ← AG(A), (msg, s, h) ∈ {0, 1}2𝜅 × Rℓ+𝑘𝑞 × R𝑘𝑞𝜈 :(

s =

[
𝑐
s′

])
∧ (0 < ∥(s, 2𝜈 · h)∥2 ≤ 𝛽) ∧ G

(⌊ [
A | I

]
· s

⌉
𝜈
+ h, msg

)
= 𝑐

]
.

The SelfTargetMSIS𝑞,ℓ,𝑘,𝐶,𝜈,𝛽 assumption states that any efficient adversary A has no more than
negligible advantage.

The worst-case to average-case reductions in the module lattice setting to support the con-
fidence on MLWE and MSIS (or alternatively SelfTargetMSIS) is provided in Appendix D.1. A
concrete security analysis of the lattice assumptions we use are provided in Section 4.3.

4.1.2 Smooth Rényi Divergence

We introduce the smooth Rényi divergence. It is motivated by the limitations of the usual Rényi
divergence, which is undefined for distributions 𝑃,𝑄 of supports not included in one another.
This is the case of the two distributions in Figure 4, which left and right “tails” 𝑇ℓ and 𝑇𝑟 make
the Rényi divergence undefined. The smooth Rényi divergence (Definition 4) addresses these
limitations by combining the statistical distance and the Rényi divergence. The statistical distance
component captures problematic sets, while the Rényi divergence component benefits from the
same efficiency as the usual Rényi divergence over unproblematic parts of the supports.

Definition 4 (Smooth Rényi divergence). Let 𝜖 ≥ 0 and 1 < 𝛼 < ∞. Let 𝑃,𝑄 be two distributions
of countable supports Supp(𝑃) ⊆ Supp(𝑄) = 𝑋 . The smooth Rényi divergence of parameters (𝛼, 𝜖)
between 𝑃 and 𝑄 is defined as:

𝑅𝜖𝛼 (𝑃 ;𝑄) = min
ΔSD (𝑃 ′;𝑃)≤𝜖
ΔSD (𝑄 ′;𝑄)≤𝜖

𝑅𝛼 (𝑃 ′;𝑄 ′), (10)

where ΔSD and 𝑅𝛼 denote the statistical distance and the Rényi divergence, respectively:

ΔSD(𝑃 ;𝑄) =
1
2

∑
𝑥∈𝑋
|𝑃 (𝑥) −𝑄 (𝑥) | , 𝑅𝛼 (𝑃 ;𝑄) =

(∑
𝑥∈𝑋

𝑃 (𝑥)𝛼
𝑄 (𝑥)𝛼−1

) 1
𝛼−1

.

36 Raccoon

While [DFPS22] has also provided a definition of smooth Rényi divergence, we argue that
our definition is more natural. Indeed, it satisfies variations of properties that are expected from
classical Rényi divergences. These are listed in Lemma 13.

We provide a smooth Rényi divergence bound between the sum of uniform distribution, cen-
tered at either 0 or a small offset. The proof of the following asymptotic bounds are provided
in Appendix A. Below, 𝜏 roughly denotes the size of the tails (see Appendix A.2).

Lemma 1. Let 𝑇,𝑢, 𝑁 ∈ N and 𝑐 ∈ Z such that 𝑇 ≥ 4 and 𝑁 = 2𝑢 . Let 𝑃 = SU(𝑢,𝑇) and 𝑄 the
distributions corresponding to shifting the support of 𝑃 by 𝑐 . Let 𝛼 ≥ 2 and 𝜏 > 0, 𝜖 > 0 be such
that:

1. 𝛼 |𝑐 | ≤ 𝜏 = 𝑜 (𝑁 /(𝑇 − 1)) ;

2. 𝜖 = (𝜏+𝑇)
𝑇

𝑁𝑇 𝑇 !
.

Then:

𝑅𝜖𝛼 (𝑃 ;𝑄) ≤
(
1 + 𝛼 (𝛼 − 1)

2

(
𝑇𝑐

𝑁

)2
+ 2
𝑇 !

(
𝑇𝛼𝑐

𝑁

)2
+ 𝜖 +𝑂

((
𝑇𝛼𝑐

𝑁

)3))1/(𝛼−1)
(11)

Gap with practice. In practice, Lemma 1 is a bit sub-optimal. Let us note 𝜎2 = 𝑇 (𝑁 2−1)
12 the

variance of 𝑃 and 𝑇𝑐 = 𝑜 (𝑁), which follows from Item 1 above. We also use the notation 𝑎 ≲ 𝑏
for 𝑎 ≤ 𝑏 + 𝑜 (𝑏). Then, Lemma 1 essentially tells us that log𝑅𝜖𝛼 (𝑃 ;𝑄) ≲ 𝛼

2

(𝑇𝑐
𝑁

)2 ∼ 𝛼 𝑐2𝑇 3

24𝜎2 .
In comparison, [ASY22, Lemma 2.28] tells that if 𝑃 is instead a Gaussian of parameter 𝜎 , then

log𝑅𝛼 (𝑃 ;𝑄) ≤ 𝛼 𝑐2

2𝜎2 . Thus there is a gap 𝑂 (𝑇 3) between Lemma 1 and [ASY22, Lemma 2.28].
One could assume that this gap is caused by a fundamental difference between Gaussians and

sums of uniforms. However we performed extensive experiments and found that this gap does
not exist in practice, i.e., it seems to be an artifact of our proof. For this reason, we put forward
Conjecture 1, which ignores this gap and which we use when setting our concrete parameters.

Conjecture 1. Under the conditions of Lemma 1, we have

𝑅𝜖𝛼 (𝑃 ;𝑄) ≲ exp

(
𝐶RÉnyi · 𝛼 · 𝑐2 (1 + 2

𝛼−1)
𝑇 · 𝑁 2

)
(12)

for a constant𝐶RÉnyi ≈ 6. Therefore, for any𝑀-dimensional vector c, P = 𝑃𝑀 and Q = c +𝑄𝑀 , and
further assuming 𝛼 = 𝜔asymp(1) and 𝑇 = 𝑜 (𝛼 |𝑐𝑖 |) for all the 𝑖-th (𝑖 ∈ [𝑀]) entry of c, we have:

𝑅𝜖𝛼 (P;Q) ≲ exp

(
𝐶RÉnyi · 𝛼 · ∥c∥22

𝑇 · 𝑁 2

)
, (13)

where 𝜖 ≈
𝛼𝑇 ∥c∥𝑇𝑇
𝑁𝑇 𝑇 !

≲
1

√
2𝜋 𝑇

(
𝛼 𝑒 ∥c∥2
𝑁 𝑇

)𝑇
(14)

and where ∥c∥𝑇 ≤ ∥c∥2 is the 𝐿𝑇 norm.

We note that Eq. (13) is obtained by invoking the tensorization property of the smooth Rényi
divergence (see Lemma 13, Item 3) on Eq. (12).

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 37

4.1.3 Security Reduction

KeyGen() → (vk, sk)
1: seed← {0, 1}𝜅
2: A← ExpandA(seed)
3: s← SU(𝑢t,𝑇)𝑛ℓ ▷ Sample the secret key in Rℓ𝑞 .
4: e← SU(𝑢t,𝑇)𝑛𝑘 ▷ Sample the MLWE noise in R𝑘𝑞 .
5: t B A · s + e ▷ Compute an MLWE sample in R𝑘𝑞 .
6: t B

⌊
t
⌉
𝜈t

▷ Drop 𝜈t bits and move t to R𝑘𝑞t .
7: vk B (seed, t)
8: sk B (vk, s)
9: return (vk, sk)

Sign(sk,msg) → sig
1: 𝜇 B H(H(vk)∥msg)
2: r← SU(𝑢w,𝑇)𝑛ℓ
3: e′ ← SU(𝑢w,𝑇)𝑛𝑘
4: w B ⌊A · r + e′⌉𝜈w ▷ Round commitment to R𝑘𝑞w .
5: 𝑐poly B G(w, 𝜇) ▷ Note that G = ChalPoly ◦ ChalHash.
6: z B 𝑐poly · s + r
7: y B A · z − 2𝜈t · 𝑐poly · t ▷ Lift t to R𝑞 and compute y ∈ R𝑘𝑞 .
8: h B w − ⌊y⌉𝜈w ▷ Compute hint h ∈ R𝑘𝑞w .
9: sig B (𝑐poly, h, z)

10: if CheckBounds(sig) = FAIL goto Line 2 ▷ CheckBounds w/o 𝐿∞- norm check.
11: return sig

Verify(sig,msg, vk) → {OK or FAIL}
1: (𝑐poly, h, z) B sig ▷ Deserialization.
2: if CheckBounds(sig) = FAIL then return FAIL ▷ CheckBounds w/o 𝐿∞- norm check.
3: 𝜇 B H(H(vk)∥msg) ▷ Bind the public key with message to form 𝜇 ∈ {0, 1}2𝜅 .
4: y B A · z − 2𝜈t · 𝑐poly · t ▷ Recompute the noisy LWE commitment.
5: w′ B ⌊y⌉𝜈w + h ▷ Adjust the MLWE commitment with hint.
6: 𝑐′poly B G(w′, 𝜇) ▷ Recompute 𝑐poly. Note that G = ChalPoly ◦ ChalHash.
7: if 𝑐poly ≠ 𝑐′poly return FAIL ▷ Check commitment.
8: return OK

Figure 5: Simplified KeyGen, Sign,Verify algorithms used in our security proof.

Here, we prove that the Raccoon signature scheme is existentially unforgeable under chosen
message attacks (EUF-CMA), whose formal definition is deferred to Definition 7.

Simplifications. For clarity, we made some changes to the Raccoon’s KeyGen, Sign and Verify
algorithms in order to remove the instructions specific to help implementations such as serializa-
tion. Moreover, as we are not considering probing adversaries, we also directly act the decoded

38 Raccoon

SampleSU(𝐿,𝑢, 𝑑, rep) → R𝐿𝑞
1: ⟦v⟧ ← 𝐿 × ZeroEncoding(𝑑)
2: ⟦v⟧ ← AddRepNoise(⟦v⟧, 𝑢, rep)
3: v B Decode(⟦v⟧)
4: return v

Figure 6: Algorithm SampleSU(𝐿,𝑢, 𝑑, rep) samples from the distribution SU(𝑢,𝑑 · rep)𝑛𝐿 and
views the sample as an element over R𝐿𝑞 .

version of our variables as this change preserves the semantic. The simplified algorithms are
provided in Figure 5. We discuss these modifications below:

• We compose the hash functions ChalHash and ChalPoly into a single hash function G B
ChalPoly ◦ ChalHash, modeled as a random oracle during in the security proof.

• This modification in turn implies a slight alteration of the signature sig, which becomes
(𝑐poly, h, z) instead of (𝑐hash, h, z), which has been set this way for signature compression
purpose.

• Finally, it leads to a modified Verify algorithm to take these changes into account. More-
over, we do not check the 𝐿∞-norm of (z, 2𝜈w ·h), as we only need its 𝐿2-norm in our proof,
and thus remove this check in our simplified Verify algorithm. This change does not im-
pact the security of our scheme as the signatures we deem valid are a superset of the actual
valid signatures, and we prove that even with this relaxation, it is hard for any adversary
to provide a forgery for this scheme.

Notations for smoothRényi divergence. Let use define SampleSU(𝐿,𝑢, 𝑑, rep) as in Figure 6.
It can be checked that each coefficient of v ∈ R𝐿𝑞 output by SampleSU is a sum of 𝑑 · rep uniform
samples over {−2𝑢−1, . . . , 2𝑢−1 − 1}, that is, SU(𝑢,𝑑 · rep). For any 𝑐 ∈ C, s ∈ Rℓ𝑞 , and e ∈ R𝑘𝑞 , we
define the following two probability distributions:

P B SU(𝑢w, 𝑑 · rep)𝑛 (ℓ+𝑘) ,
Q(center) B center + P,

where center B 𝑐 ·
[
s
e

]
∈ Rℓ+𝑘𝑞 . We provide some smooth Rényi divergence related terms relating

to the two distributions P and Q. Below, we set 𝑇 = 𝑑 · rep.
For any 𝛼 = 𝜔asymp(1) and 𝜖Tail(center) = 1√

2𝜋 𝑇

(
𝛼 𝑒 ∥center∥2

2𝑢w ·𝑇

)𝑇
(see Conjecture 1), we define

𝜖Tail to be any value satisfying

Pr
(s,e)←SU(𝑢w,𝑇)𝑛ℓ×SU(𝑢w,𝑇)𝑛𝑘

[
𝜖Tail ≥ max

𝑐∈C
𝜖Tail(center)

]
≥ 1 − negl(𝜅). (15)

With an abuse of notation, we define 𝑅𝜖Tail𝛼 (P;Q) as any value satisfying

Pr
(s,e)←SU(𝑢w,𝑇)𝑛ℓ×SU(𝑢w,𝑇)𝑛𝑘

[
𝑅𝜖Tail𝛼 (P;Q) ≥ max

𝑐∈C
𝑅𝜖Tail (center)
𝛼 (P;Q(center))

]
≥ 1 − negl(𝜅) . (16)

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 39

For efficiency and better parameters, we set 𝜖Tail and 𝑅𝜖Tail𝛼 (P;Q) to be the smallest values satis-
fying the above inequality. A candidate asymptotic parameter selection for these values (and all
other parameters) is provided in Appendix D.2.

Theorem 1. The Raccoon signature scheme described in Section 2 is EUF-CMA secure under the
MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑑 ·rep) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 assumptions.

Formally, for any adversary A against the EUF-CMA security game making at most 𝑄ℎ ran-
dom oracle queries and 𝑄𝑠 signing queries, and 𝜖Tail and 𝑅

𝜖Tail
𝛼 (P;Q) satisfying Eqs. (15) and (16),

there exists adversariesB andB′ against the MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑑 ·rep) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽
problems such that

AdvEUF-CMA
A ≤ 2−𝜅 ·𝑄ℎ · (1 + 2−𝜅+1 ·𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +𝑄𝑠 · 𝜖Tail

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail𝛼 (P;Q)

)𝑄𝑠 , (17)

whereTime(A) ≈ Time(B) ≈ Time(B′) and we can assumeTime(A) > 𝑂 (𝑄ℎ+𝑄𝑠). Concretely,
plugging in our candidate asymptotic parameters in Appendix D.2, we conclude AdvEUF-CMA

A is
bounded by negl(𝜅).

The full proof of the theorem is provided in Appendix D.3. We also show that by further
assuming the MSIS problem for a similar set of parameters, we can establish sEUF-CMA security.
The details are provided in Appendix D.4. Below, we provide a proof overview of Theorem 1.

Proof overview. The security proof follows a sequence of hybrids (Hybrid0 to Hybrid7) going
from the EUF-CMA game to a final game that enjoys a reduction to the SelfTargetMSIS problem.

The first two hybrids (Hybrid1 and Hybrid2) manipulate the XOF ExpandA and hash function
H, both modeled as random oracles. In Hybrid1, we first sample a random matrix A ∈ R𝑘×ℓ𝑞

and program the output of ExpandA(seed) to be the matrix A for a random seed ← {0, 1}𝜅 .
This is unnoticeable from an adversary since seed is sampled uniformly. Looking ahead, this
allows the reduction to embed a SelfTargetMSIS problem in A. Then in Hybrid2, we add a step
to abort in the unlikely event that the adversary outputs a forgery on message msg∗ such that
H(H(vk)∥msg∗) = H(H(vk)∥msg) for some msg queried to the signing oracle. In particular, this
takes care of the event that the adversary breaks EUF-CMA security by finding a collision in H.
Since H is modeled as a random oracle, this cannot happen.

Now, in the next three hybrids (Hybrid3 toHybrid5), the goal is to edit the signing oraclewhich
initially coincides with the simplified Sign algorithm from Figure 5 to lift the dependency on se-
cret information: it boils down to proving the honest-verifier zero-knowledge of the argument
underlying the signature scheme. In Hybrid3, we replace the way the challenge 𝑐poly is gener-
ated by sampling it at random from its set C and then program the random oracle G to answer
consistently.5 Once that is done, in Hybrid4, we replace the way the commitmentw is computed:
instead of being sampled as an MLWE sample, we introduce a new variable z′ B 𝑐poly · e + e′,
which essentially corresponds to the difference between A · z − 𝑐poly · t̄ and the commitment w
before rounding. This rewriting effectively allows us to first sample z = 𝑐poly · s + r′ and z′ and
then set the commitment w = A · z − 𝑐poly · t̄ + z′; recall that in the real game, w = A · r + e′
is sampled and then z is computed. Which leads us to Hybrid5, where (z, z′) is now sampled
from SU(𝑢w,𝑇)𝑛ℓ × SU(𝑢w,𝑇)𝑛𝑘 . Notice the distribution of (z, z′) in Hybrid4 and Hybrid5 follow
Q(center) and P defined above, respectively. To argue this change, we measure the difference
between the distributions Q(center) and P using the smooth Rényi divergence presented in Sec-
tion 4.1.2. It is worth noting that we cannot rely on the usual Rényi divergence as the support

5As the Raccoon signature scheme does not use rejection sampling, our proof of reprogramming the random oracle
G is not affected by the bug in the proof of Dilithium [DKL+18b] pointed out in [DFPS23, BBD+23].

40 Raccoon

of Q(center) and P are different; this is in contrast to prior works where (z, z′) follows a dis-
crete Gaussian distribution with shifted centers, having the same support regardless of the center.
Concretely, we set the parameters so that the size 𝜖Tail of the tails of Q(center) and P, for which
we cannot apply the usual Rényi divergence argument, is negligible. We then rely on Lemma 1
and Conjecture 1 to show that for any A, we can set 𝛼 so that 𝑅𝜖Tail𝛼 (P;Q)𝑄𝑠 is polynomially
bounded (cf. Eq. (16)).

Then, in Hybrid6, realizing that the rest of the algorithm does not depend on the secret s and
e, we can swap t̄ to a uniform vector over R𝑘𝑞 , which is possible thanks to the hardness of the
MLWE assumption. We arrived to a hybrid where we can embed an SelfTargetMSIS instance
[−t̄ | A] ← R𝑘×(ℓ+1)𝑞 into the verification key. Lastly, in Hybrid7, we modify the description
of the random oracle G provided to the EUF-CMA adversary, by embedding the random oracle
G′ provided by the SelfTargetMSIS problem. At this point, any EUF-CMA adversary against
Hybrid7 can be used to derive a valid solution for the SelfTargetMSIS problem.

Collecting all the advantage bounds, we obtain Theorem 1. The bound is used as a base
reference in Section 4.3 to set our concrete parameters. □

4.1.4 An Alternative Proof Aiming For 2𝜿 -Security

In Theorem 1, we aimed at the standard notion of EUF-CMA security where the advantage di-
vided by the running time of the adversary (i.e., the inverse of theworking factorTime(A)/AdvA)
is upper bounded by some negligible function 𝑓 (𝜅). In practice, however, it is more informative
for aiming at 2𝜅-EUF-CMA security, meaning that AdvA/Time(A) can be upper bounded by
𝐶 · 2−𝜅 for some small constant 𝐶 > 0. This helps assess the concrete hardness of our Raccoon
signature, as otherwise, we would have to consider how large the security parameter 𝜅 must be
before 𝑓 (𝜅) starts to behave well.

In Theorem 1, we can set the parameters so that

AdvEUF-CMA
A /Time(A) ⪅ 2−𝜅 + 𝜖Tail,

assuming the 2𝜅-hardness of the underlying MLWE and SelfTargetMSIS problems. For all but
one set of our concrete parameters in Section 2.1, we have 𝜖Tail ⪅ 2−𝜅 . However, when (𝑑, rep) =
(1, 2), we have 𝜖Tail = 2−64 for𝜅 ∈ {128, 192, 256}. Therefore, in this specific case,Theorem 1 does
not guarantee 2𝜅-EUF-CMA security (while it still guarantees the standard notion of asymptotic
unforgeable security). To this end, we briefly provide an alternative proof of Theorem 1 so that
the Raccoon signature provides 2𝜅-EUF-CMA security even if 𝜖Tail is some negligible function
larger than 2−𝜅 .

How does 𝜖Tail affect the concrete security? Recall the bound on 𝜖Tail appears when invok-
ing the smooth Rényi divergence to move from Hybrid4 to Hybrid5 in the proof of Theorem 1,
where (z, z′) is set as (𝑐poly · s + r, 𝑐poly · e + e′) in Hybrid4 and as (r, e′) in Hybrid5. To put it in
context, if 𝜖Tail ⪅ 2−𝜅 , the statistical distance of the distributions of (z, z′) in the two hybrids are
roughly 2−𝜅-close, i.e., (z, z′) will not reside in the Tail region of the distribution with all but
probability 2−𝜅 (see Figure 4). However, when 𝜖Tail = negl(𝜅) ≥ 2−𝜅 , there is some chance (still
negligible) that some coefficient of (z, z′) may reside in the tail of the distribution, in which case,
Hybrid4 and Hybrid5 become distinguishable. We briefly explain an alternative hybrid sequence
that does not rely on Hybrid5 in order to establish 2𝜅-unforgeable security of Theorem 1. At a
high level, we argue that leaking only very few samples in Tail does not harm security in any
noticeable manner.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 41

Bounding the number of samples in Tail. Recall the set of responses {(z(qs) , z′(qs))}qs∈[𝑄𝑠] ∈
(Rℓ𝑞×R𝑘𝑞)𝑄𝑠 . We prepare a list BAD whose entry is initialized with 0 and update BAD[qs, 𝑖, 𝑗] = 1

for (qs, 𝑖, 𝑗) ∈ [𝑄𝑠] × [ℓ] × [𝑛] when the 𝑗-th coefficient of 𝑧 (qs)
𝑖 falls in Tail, where 𝑧 (qs)

𝑖 is the
𝑖-th element of z(qs) . Similarly we define BAD′ for {z′(qs) }qs∈[𝑄𝑠] . We first count the number of
locations in BAD with a 1 standing.

Let 𝑁 = 2𝑢w , let 𝑝0(𝑐) = 2𝜖Tail(𝑐) be the probability that a sample 𝑧 = 𝑐 + 𝑟 falls in Tail for
𝑟 ← SU(𝑢,𝑇). According to Lemma 7, for 𝜏 > |𝑐 | (𝛼 + 2) we have 𝜖Tail(𝑐) ≤ 𝜖Tail,∞ = (𝜏+𝑇)𝑇

𝑇 !𝑁𝑇 ,
therefore 𝜏 ∼ 𝑁 (𝜖Tail,∞ · 𝑇 !)1/𝑇 , and since the infinity norm is smaller than the Euclidean norm
𝜖Tail,∞ ≤ 𝜖Tail = negl(𝜅). In total, there will be 𝑀 = 𝑛 (ℓ + 𝑘)𝑄𝑠 samples (i.e., 𝑀 = |BAD| +
|BAD′ |), with a probability less than 𝑝0 = max𝑐∈C 𝑝0(𝑐) of each falling in Tail. Thus, the number
of samples in Tail follows a Bernoulli distribution of parameters (𝑝0, 𝑀). Let 𝑋 be the random
variable of the number of coefficients falling in Tail. The additive Chernoff bound tells us that

Pr[𝑋 > 𝑀 𝑝0 + 𝛿] < exp

(
− 𝛿2

2𝑀 𝑝0

)
Since we want the number of BAD events to be constant with overwhelming probability, as long
as 𝜖Tail,inf ≤ 1

𝑀𝜅 , which always holds true when 𝜖Tail,inf = negl(𝜅), and 𝛿 =
√
2 log(2) 𝑝0𝑀 𝜅 =

2
√
log(2)𝜖Tail,inf 𝑀 𝜅 , we get:

Pr
[
𝑋 > 2

(
1 +
√
ln 2

)]
< 2−𝜅 (18)

We have established that the number of 1s in BAD and BAD′ are bounded by some constant
𝜈 with all but probability 2−𝜅 when 𝜖Tail,inf is negligible.

We are now ready to define an alternative to Hybrid5, denoted as Hybrid5′ . This is defined
exactly as Hybrid5 for all the samples where BAD and BAD′ are 0. The difference is that for
samples where BAD and BAD′ are 1, Hybrid5′ remains identical to Hybrid4, i.e., we leak the
samples that fall in Tail. We can now change the distribution of z, z′ at all indices for which
BAD and BAD′ take the value 0. Additionally since we condition this change on the event BAD
(or BAD′) not occurring (which implies that we are not in the Tail) we can use the (standard)
Rényi divergence instead of the smooth Rényi divergence and avoid the additive 𝜖Tail term. i.e.
we have:

AdvHybrid4
A ≤

(
AdvHybrid5′

A

) 𝛼−1
𝛼 · (𝑅𝛼 (P′;Q′))𝑄𝑠

≤
(
AdvHybrid5′

A

) 𝛼−1
𝛼 · exp

(
𝑄𝑠 ·𝐶RÉnyi · 𝛼 · ∥ (𝑐poly · s, 𝑐poly · e)∥22

𝑇 · 𝑁 2

)
Where P′ (resp. 𝑄 ′) is the distribution obtained by cutting the tails of P. The last inequality
comes from the fact that we set 𝑅𝜖𝛼 (P;Q), by using the Rényi divergence of P′, Q′ with identical

tails which is equivalent to cutting both tails. If we set 𝑁 = 𝜔asymp

(√
𝑄𝑠 ·𝛼
𝑇 ∥(𝑐poly · s, 𝑐poly · e)∥2

)
,

then the exponential term in the above equation will be constant. It remains to discuss the two
following properties to establish 2𝜅-EUF-CMA security of the Raccoon signature:

Leak 1. The position of 1s in BAD and BAD′ do not leak information on the secret (s, e).

Leak 2. The samples in the Tail do not leak information on the secret (s, e).

Controlling Leak 1 via Rényi divergence. We rely on the standard Rényi divergence to ar-
gue that the position of 1s in BAD and BAD′ is independent of the secret, i.e., center of the

42 Raccoon

distribution. A keen reader may have noticed that we already used this argument above when
counting the number of samples falling in Tail. Namely, we show that the distribution of 1 in
BAD and BAD′ follows a Bernoulli distribution of parameters (𝑝0, 𝑀). Using Lemma 7 we obtain
a bound on the Rényi divergence between the distribution of the events (BAD,BAD′) in Hybrid5′
and the event of Hybrid6′ where (BAD,BAD′) is defined as a vector of iid. Bernoulli’s variables
independent of s, e, and 𝑐 .

AdvHybrid5′
A ≤

(
AdvHybrid6′

A

) 𝛼−1
𝛼 · exp

(
𝑀𝑇 4 𝜖Tail,∞

4𝛼3

(
1 +𝑂 ((𝑇 /𝛼)2)

))
,

When setting parameters we will use 𝛼 = 𝜔asymp(
√
𝜅) and 𝑇 = 𝜔asymp(1), hence if we set 𝑁 ≥

𝑀1/𝑇 (
∥(𝑐poly · s, 𝑐poly · e)∥∞(𝛼 + 2) +𝑇

)
then we have:

AdvHybrid5′
A ≤

(
AdvHybrid6′

A

) 𝛼−1
𝛼 · exp

(
𝑂

(
1

𝜅3/2

))
.

Controlling Leak 2 via Extended MLWE. We rely on the 2𝜅-hardness of the extended MLWE
assumption (ExtMLWE) to argue that we can leak a constant number of samples falling in the
Tail. ExtMLWE roughly states that MLWE remains difficult even if some hints of the secret
and noise is revealed to the adversary. We consider a variant of ExtMLWE where each hint is a
coefficient of an inner product of the secret and noise vector. Formally, ExtMLWE is defined as
follows.

Definition 5 (ExtMLWE). Let ℓ, 𝑘, 𝑞, 𝜂 be integers, and D, F be probability distributions over R𝑞
and Z𝜂×(ℓ+𝑘) ·𝑛𝑞 where recall R𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1). The advantage of an adversary A against the
Extended Module Learning with Errors ExtMLWE𝑞,ℓ,𝑘,D,F problem is defined as:

AdvExtMLWE
A (𝜅) =

����Pr [
1← A

(
A,A · s + e,M,M · coeff

([
s
e

]))]
− Pr

[
1← A

(
A, b,M,M · coeff

([
s
e

]))] ���� ,
where (A, b, s, e,M) ← R𝑘×ℓ𝑞 × R𝑘𝑞 × Dℓ × D𝑘 × F . Here, coeff : R𝑞 → Z𝑛𝑞 denotes the coefficient
embedding, and is naturally defined for vectors over R𝑞 . The ExtMLWE𝑞,ℓ,𝑘,D,F assumption states
that any efficient adversary A has negligible advantage.

For our argument, we rely on ExtMLWE with the following parameter selection:

• 𝜂 = 𝑂 (1), i.e., the number of samples falling in Tail.

• F is a distribution such that
{
M · coeff

([
s
e

])
| M← F

}
induces the same distribution of

the set of centers for the samples falling in Tail.

In more detail, when BAD[qs, 𝑖, 𝑗] = 1, we leak the 𝑗-th coefficient of 𝑧qs
𝑖 = (𝑐poly · 𝑠𝑖 + 𝑟𝑖)

to the adversary, where the center is the 𝑗-th coefficient of 𝑐poly · 𝑠𝑖 and (𝑠𝑖 , 𝑟𝑖) denote the 𝑖-th
entry of (s, r). ExtMLWE says that the scheme remains secure even if we leak coeff (𝑐poly · 𝑠𝑖) 𝑗 =
m · coeff (𝑠𝑖), where m denotes the 𝑗-th row of 𝑐poly ∈ R𝑞 when represented as an anti-circulant
matrix Z𝑛×𝑛𝑞 . Since the inner product is always defined with a challenge polynomial, anyM ∈ F
satisfies ∥M∥∞ = 1 and each row of M consists of exactly 𝜔 non-zero entries.

As a minimal background, the non-structured variant of ExtMLWE (i.e., extended LWE)
was originally introduced by [OPW11, AP12] in the context of (bi)deniable encryption and key-
dependent message security, and later used by [BLP+13] in the context of establishing classical

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 43

hardness of the LWE problem. Under specific parameters, ExtLWE is known to be as hard as
LWE. Since then, different variants have been considered [ALS16, AA16, LNS21, BJRW23]. We
discuss the concrete hardness of our variant of ExtMLWE in Section 4.3.7. We also discuss its
asymptotic hardness in Appendix C.2.

4.2 Security against Probing Adversaries

In this section, we provide an informal argument for the security of the Raccoon signature scheme
in the presence of 𝑡-probing adversaries. Previous works onmasking lattice-based signatures pro-
ceed by decomposing the main algorithms (key generation and signing) in subroutines, masking
each of these subroutines, and arguing the security of the global scheme via composition frame-
works. For example, [BBE+18, GR19, BBE+19] rely on the (Strong)-Non-Interference (NI/SNI)
framework [BBD+16], whereas [ABC+22] rely on the Probe Isolating Non-Interference (PINI)
framework [CS20].

Contrary to existing masked lattice-based signatures, the design of Raccoon makes a de-
liberate choice to allow signatures to leak a limited amount of information in a way that is
well-understood and captured with a Rényi divergence analysis, similarly to what Falcon does
[PFH+22, §2.5.2 and §2.6].

In more detail, all subroutines of Raccoon can be proved composable in the SNI model, except
one: AddRepNoise (Algorithm 8). While this gadget performs operations share by share, the un-
derlying distributions are not uniform. Short noise values are added together and the knowledge
of any intermediate short value biases the a posteriori distribution of the final noise. Hence, one
cannot prove the Non-Interference of such a gadget without extra computational assumption on
the attacker.

We put forth a preliminary argument regarding the incorporation of AddRepNoise into pre-
vailing masking composition frameworks, which presents certain challenges. However, these
do not arise from inherent limitations of the Raccoon scheme, and rather, it seems possible to
extend the current composition frameworks to capture “leaky” algorithms such as AddRepNoise
and ensure the masking security with a computational advantage. This interesting problem will
be fully dealt with in the near future.

4.2.1 Impact of Probing on AddRepNoise.

When considering unmasked coefficients, AddRepNoise is functionally equivalent to performing
𝑎 ← 𝑎 + SU(𝑢,𝑇) for each coefficient 𝑎, for 𝑇 = 𝑑 · rep. The internal use of Refresh operations
does not affect this behavior but is meant to offer some resilience to 𝑡-probing adversaries.

Without Refresh, a viable strategy would be to probe individual shares of ⟦𝑎⟧ at the start and
at the end of AddRepNoise, allowing to learn the sum 𝑏 of rep · 𝑡/2 small uniform errors. This
is illustrated in Figure 7. The conditional distribution of the additive noise (conditioned on the 𝑡
probed values) is now 𝑏 + SU(𝑢,𝑇 − 𝑡 · rep/2).

With Refresh, the previous strategy is not possible anymore but the 𝑡-probing adversary can
still probe individual errors, which in the end gives out no more than the sum 𝑏pRobe of 𝑡 small
uniform errors. This is also illustrated in Figure 7. The conditional distribution of the additive
noise (conditioned on the 𝑡 probed values) is now 𝑏pRobe+SU(𝑢,𝑇 −𝑡), where the adversary learns
𝑏pRobe but knows nothing about the realization of SU(𝑢,𝑇 − 𝑡).

4.2.2 Probing Security of Key Generation

In a nutshell, key generation (KeyGen, Algorithm 1) generates an MLWE sample (A, t) as follows:

44 Raccoon

(a) Without refresh: a 𝑡-probing adversary can learn the sum of ⌊𝑡/2⌋ ·rep small uniform noises by probing
the same indices (•) at the start and end of the algorithm.

(b) With refresh: a 𝑡-probing adversary can learn the sum of at most 𝑡 small uniform noises.

Figure 7: Illustration of (a) an insecure algorithm for adding noise and (b) our probing-resilient
algorithm AddRepNoise. Parameters are 𝑑 = 4, rep = 8, 𝑡 = 3.
• Each circle represent one share of a 𝑑-sharing.
• A 𝑑-sharing is indicated in green if it is refreshed, otherwise it is in white .
• Each red arrow represent the addition of small uniform noise to the corresponding share.
• In (a) and (b), a probing adversary learns the sum of the additive noise involved in red arrows.

1. t is first computed in masked form: ⟦t⟧ ← A · ⟦s⟧ + ⟦e⟧, where ⟦s⟧, ⟦t⟧ are generated
during the call to AddRepNoise in Algorithm 1 (Line 4 respectively).

2. t is then unmasked (Algorithm 1, Line 7) and rounded. We ignore this rounding in our
analysis and assume that the adversary has access to t before it is rounded.

For the reasons explained above, while all the other implied gadgets are composable, a 𝑡-probing
adversary can still infer some information about the output of AddRepNoise. In contexts such
as trapdoor sampling, such a bias could be exploited to mount key-recovery attacks [GMRR22,
ZLYW23, Pre23]. However, we argue that it has a minimal impact on the overall security of the
key generation procedure.

If we ignore the effect of rounding, thus providing more information to the adversary, then
the verification key is an MLWE sample (A, t) where t = A · s + e, where each coefficient of
(s, e) is sampled according to a noise distribution of variance 𝜎2

t = 𝑇 (22𝑢𝑡 −1)
12 , see Eq. (6), and

𝑇 = 𝑑 · rep. This enables a security analysis based on the MLWE assumption with standard
deviation 𝜎t, which is well understood.

As discussed above, a 𝑡-probing6adversary can slightly bias the noise distribution. More
precisely, we can rewrite the verification key vector t as:

t = A · (spRobe + s∗) + (epRobe + e∗) = (A · spRobe + epRobe)︸ ︷︷ ︸
tpRobe

+ (A · s∗ + e∗)︸ ︷︷ ︸
t∗

(19)

In Eq. (19), spRobe and epRobe correspond to additive errors probed during AddRepNoise. We very
conservatively assume that the adversary can probe up to 𝑡 additive errors per integer coefficient of

6Recall that the italic variable 𝑡 corresponds to the masking order 𝑡 = 𝑑 − 1 and the vector t corresponds to the
public key.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 45

t (i.e. obtain their exact values). Thus, the remaining secrets (s∗, e∗) are such that each coefficient
of (s∗, e∗) is sampled according to a noise distribution of variance 𝜎2

t∗ = (𝑇−𝑡) (22𝑢𝑡 −1)
12 . Since

𝑡 ≤ 𝑑 − 1 by hypothesis: (
𝜎t∗

𝜎t

)2
=
𝑇 − 𝑡
𝑇

>
rep − 1

rep . (20)

Since rep ≥ 2 in Raccoon, Eq. (20) tells us that a 𝑡-probing adversary cannot reduce the standard
deviation of the MLWE noise distribution by more than a factor

√
rep−1

rep ≤
√
2. We incorporate

this security loss when studying the concrete pseudo-randomness of the verification key, more
precisely the hardness of MLWE in Section 4.3.4.

4.2.3 Probing Security of Signing

The structure of the signing procedure (Sign, Algorithm 2) is as follows:

(S1) An MLWE commitment w is computed in masked form, then unmasked, in a way that is
identical to the computation of t during key generation, only with different parameters;

(S2) A challenge 𝑐poly is computed in unmasked form; a response z is computed in masked form,
then unmasked; and the hint h is computed from publicly available values.

Non-composability. For the reasons discussed in Section 4.2.2, while the way we implement
Item (S1) makes it extremely efficient, it also precludes it from being a composable building block
in existing frameworks, as AddRepNoise leaks some information about the ephemeral random-
ness contained in w. While Section 4.2.2 provides security arguments for key generation in the
presence of this leakage, in the signing procedure we additionally need to study how the leakage
in Item (S1) trickles down in Item (S2).

Impact of probing on Sign. The commitmentw is of the formw = A ·r+e′, where each coeffi-
cient of (r, e′) is sampled according to a noise distribution of variance 𝜎2

w = 𝑇 (22𝑢𝑤 −1)
12 . Following

the same reasoning as in Section 4.2.2, a 𝑡-probing adversary can learn partial information about
r, e′. More precisely, if we write:

w = A · (rpRobe + r∗)︸ ︷︷ ︸
r

+ (e′pRobe + e′∗)︸ ︷︷ ︸
e′

, (21)

we assume that the adversary may learn rpRobe, e′pRobe. The remaining randomness r∗, e′∗ have
each of their coefficients sampled according to a noise distribution of variance𝜎2

w∗ =
(𝑇−𝑡) (22𝑢𝑤 −1)

12 .
This mainly impacts our smooth Rényi divergence argument; instead of arguing that (r, e′) and
(r, e′) + 𝑐poly (s, e) are close in the sense of the smooth Rényi divergence (Definition 4), we now
need to argue (r∗, e′∗) + 𝑐poly (s, e) is close to (r∗, e′∗), still in the sense of Definition 4, with only
a loss

√
2 in the standard deviation of (r∗, e′∗). This is reflected by our concrete security analysis

in Section 4.3.6.

4.3 Concrete Security

4.3.1 Modelization and Methodology

We now turn to the concrete security estimation of the Raccoon signature scheme and design a
methodology to provide a practical set of parameters. We follow here the standard methodology
and define the bit-security as

46 Raccoon

𝜅 = log2

(
Time(A)/AdvEUF-CMA

A

)
(22)

as a translation from the advantage of an adversary into concrete security measured in bits (for
computations carried in the so-called Core-SVPmodel, as detailed in Section 4.3.3). In a word, the
log-advantage is normalized by the resources Time(A) spent by the adversary. It always holds
that Time(A) ≥ 𝑄𝑠 +𝑄ℎ . Here, the adversaries considered will be the one breaking the pseudo-
randomness of the verification key t and the one playing the EUF-CMA game, recovering the
usual and more informal notions of security against respectively key recovery and forgery. Our
analysis can be seamlessly extended to cover sEUF-CMA (Theorem 2) with the same parameter
sets, since the constant 2

√
2 in Theorem 2 seems to be an artifact of the proof, and may instead

be set to 1 for practical purposes.
Remark 1. As detailed in Section 4.1.4, depending on the regime of parameters, we might need
a finer-grained security analysis because of the relative size of 𝜖Tail. This section also takes this
subtlety into account by analyzing practically the impact of leaks in the ExtMLWE problem.

4.3.2 Roadmap

Recall from Section 4.1 that the blackbox security reduction of Theorem 1 yields a tight estimate
of the advantage of the adversary in the EUF-CMA security game. We reproduce this estimate in
Eq. (23). We map each constitutive term of the right-hand-side of Eq. (23) to the corresponding
section where its concrete analysis and security estimate is presented.

AdvEUF-CMA
A ≤ 2−𝜅 ·𝑄ℎ · (1 + 2−𝜅+1 ·𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B︸ ︷︷ ︸
§4.3.4

+AdvSelfTargetMSIS
B′︸ ︷︷ ︸

§4.3.5

+𝑄𝑠 · 𝜖Tail︸︷︷︸
§4.3.6

) §4.3.6︷︸︸︷
𝛼−1
𝛼 · 𝑅𝜖Tail𝛼 (P;Q)𝑄𝑠︸ ︷︷ ︸

§4.3.6

, (23)

After giving some details on the model of computation used to translate complexity into practical
bitsec in Section 4.3.3, we propose in Section 4.3.4 a hardness analysis of the MLWE problem and
discuss its relation to probing security. This will entail the resilience against key recovery through
breaking the pseudorandomness of t. Next, we present in Section 4.3.5 the different building
blocks required to assess the advantage against EUF-CMA. Eventually we bind every piece of
the puzzle together in Section 4.3.8 and discuss the interactions of parameters, as well as how to
perform the global optimization.

4.3.3 Concrete Model of Lattice Reduction, GSA and Beyond

The core-SVP hardness. To accurately assess the hardness of the underlying problems and
ensure a specified level of bit-security, it is necessary to establish a model that simulates the
behavior of a practical oracle for approximate Shortest Vector Problem (SVP). This modeling is
crucial since our hard problems involve the identification of relatively short vectors in various
lattices. To achieve this, we will employ the celebrated (self-dual) Block Korkine-Zolotarev (BKZ)
algorithm. Specifically, the BKZ algorithm with a block size denoted by 𝛽 necessitates a polyno-
mial number of calls to an SVP oracle in dimension 𝛽 , with a heuristically expected number of
calls that is approximately linear—with some implementation tricks.

To account for potential future advancements in this reductionmethod, wewill only consider
the cost of a single call to the SVP oracle. This approach, known as core-SVP hardness, entails
a highly conservative estimation. This cautionary measure is warranted by the possibility of
cost amortization for SVP calls within BKZ, particularly when sieving is employed as the SVP

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 47

oracle. Notably, sieving has become the prevailing standard for larger block sizes, as exemplified
in [ADH+19].

Modelization of the output of reduced bases. For the sake of clarity in the following expla-
nations, we adopt the ”Geometric series assumption” (GSA).This assumption states that the norm
of the Gram-Schmidt vectors of a reduced basis decreases with a geometric decay. Specifically,
in the context of the self-dual Block Korkine-Zolotarev (DBKZ) reduction algorithm proposed
by Micciancio and Walter [MW16], the GSA can be instantiated as follows. Suppose we have an
output basis (b𝑖)𝑖∈[𝑛] obtained from the DBKZ algorithm with a block size denoted as 𝛽 , applied
to a lattice Λ of rank 𝑛. Then, the following equation holds for the 𝑖-th Gram-Schmidt vector b∗𝑖
of the basis:

∥b∗𝑖 ∥ = 𝛿𝑑−2(𝑖−1)
𝛽

det(Λ) 1𝑛 , where 𝛿𝛽 =

(
(𝜋𝛽)

1
𝛽 · 𝛽

2𝜋𝑒

) 1
2(𝛽−1)

,

for b∗𝑖 being the 𝑖-th Gram Schmidt vector of the basis.
In order to get a finer estimate, when computing the actual figures this analysis can be refined

by using the probabilistic simulation of [DDGR20] rather than this coarser GSA-based model to
determine the BKZ blocksize 𝛽 for a successful attack. This helps to take into account the well-
known quadratic tail phenomenon of reduced bases [YD17].

From lattice reduction block-size to concrete bitsec. This analysis translates into concrete
bit-security estimates following the methodology of NewHope [ADPS16] (so-called “core-SVP
methodology”). In this model, the bit complexity of lattice sieving (which is asymptotically the
best SVP oracle) is taken as ⌊0.292𝛽⌋ in the classical setting [BDGL16] and ⌊0.257𝛽⌋ in the quan-
tum setting [CL21] in blocksize 𝛽 .

4.3.4 Hardness of Key Recovery

Pseudorandomness of t. For Raccoon, the MLWE assumption captures the pseudorandom-
ness of the verification key t (i.e. entails the security when the adversary is only provided with t).
This problem is defined over modules and is then categorized as a structured problem. However
up to the knowledge of the authors, there is no real improvements to the practical solving of
MLWE than seeing it as an unstructured problem and apply the classical unstructured attacks.

On MLWE and lattice reduction. More precisely, any MLWE𝑞,ℓ,𝑘,D instance (A, b) over the
ring R𝑞 of degree 𝑛 for some noise distribution D can be viewed as an LWE instance of dimen-
sions 𝑛 · ℓ and 𝑛 · 𝑘 . Indeed, the above can be rewritten as finding vec(s), vec(e) ∈ Z𝑛 ·ℓ × Z𝑛 ·𝑘
from the instance (rot(A), coeff (b)), where we recall that coeff : R𝑞 → Z𝑛𝑞 denotes the coeffi-
cient embedding, and rot(A) ∈ Z𝑛 ·𝑘×𝑛 ·ℓ , is obtained by replacing all entries 𝑎 ∈ R𝑞 of A by the
𝑛 × 𝑛 matrix whose 𝑓 -th column is (𝑋 𝑓 −1 · 𝑎𝑖 𝑗).

Given an LWE instance, there are two basic lattice-based attacks: the primal attack and the
dual attack. On the one hand, the former consists in finding a short non-zero vector in the lattice
{x ∈ Z𝑑 : D · x = 0 (mod 𝑞)} where

D = (rot(A)[1:𝑚] | I𝑚 | vec(t)[1:𝑚]) ∈ Z𝑚×𝑑

is a matrix which dimensions verify 𝑑 = 𝑛 · ℓ +𝑚 + 1 and7 𝑚 ≤ 𝑛 · 𝑘 . On the other hand, the dual
attack consists in finding a short non-zero vector in the lattice {(x, y) ∈ Z𝑚 × Z𝑑 : D𝑇x + y = 0

7This description already encompasses a folklore little optimization consisting in reducing only a sublattice instead
of the whole one, in order to play with the interaction between dimension and volume.

48 Raccoon

(mod 𝑞))}, whereD = (rot(A)[1:𝑚]) ∈ Z𝑚×𝑑 for𝑑 = 𝑛 ·ℓ and𝑚 ≤ 𝑛 ·𝑘 . Again, for each value of𝑚,
we increased the value of 𝛽 until the value obtained as explained above was deemed sufficiently
small. From these two basic ideas, numerous optimizations and variants have been proposed and
the optimal one depends greatly on the regime and distributions.

Concrete hardness. When reinstantiating the problem in the context of the Raccoon signa-
ture scheme, we are bound to estimate the concrete hardness of MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑇) , with 𝑇 =
𝑑 · rep − 𝑡 . Remark that this already encompasses a 𝑡-probing adversary, as discussed in Sec-
tion 4.2.2.

To entail the set of equations just described and find the smallest block size 𝛽 allowing to run
the attack, we practically rely on simulation (see [APS15]) to get finer-grained results. According
to this estimator, the best known attacks are the primal uSVP attack by Alkim et al. [ADPS16]
and the dual/hybrid attack by Espitau et al. [EJK20]. Eventually we can apply the dimensions for
free optimization by Ducas [Duc18] to gain a few additional bits when using a sieve-based BKZ.

4.3.5 Hardness of Direct Forgery

The problem can be restated from Definition 3 as follows. If we note Ā =
[
A | I

]
and z̄ =

[
z
h

]
,

then the adversary needs to find an element ¯𝑣𝑒𝑐𝑧 such that:(
0 < ∥(z, 2𝑣h)∥2 < 𝐵

)
∧

(
𝐺 (⌊A · z⌉𝜈w + ℎ − t · 𝑐,msg) = 𝑐

)
. (24)

Following [LDK+22, §C.3], we can assume that the best way to solve (24) is either by breaking
the second preimage resistance of 𝐺 or by finding a short z̄ such that

Ā · z̄ = w + t · 𝑐 + 𝛼, (25)

for 𝛼 = A · z − 2𝜈w ⌊A · z⌉𝜈w being a small term (of norm bounded by 2𝜈w−1) and where w is a
preimage of 𝑐 , i.e. 𝐺 (w,msg) = 𝑐 . We study both problems in separate paragraphs.

MSIS. Solving Eq. (25) amounts to solving an inhomogeneous (noisy) MSIS problem which
in turns (practically) amounts to finding z̄ at a bounded distance from the point v̄ = w + t · 𝑐 .
This BDD problem can be solved using the so-called Nearest-Cospace framework developed by
Espitau and Kirchner in [EK20]. Under the GSA, [EK20, Theorem 3.3] states that under the
condition: ∥z̄ − v∥ ≤

(
𝛿 (𝑘+ℓ)𝑛
𝛽

𝑞
𝑘𝑛
𝑘+ℓ

)
, the decoding can be done in time poly(𝑛) calls to a CVP

oracle in dimension 𝛽 . Once again here, we reduced to the unstructured equivalent problem by
descending from the ring of integer of the base field to Z to mount the attack.

As mentioned in [CPS+20] a standard optimization of this attack consists only considering
the lattice spanned by a subset of the vectors of the public basis and perform the decoding within
this sublattice. The only interesting subset seems to consist in forgetting the 𝑘 ≤ 𝑛 first vectors.
The dimension is of course reduced by 𝑥 , at the cost of working with a lattice with covolume
𝑞

𝑘𝑛
(𝑘+ℓ)𝑛−𝑥 bigger. Henceforth the global condition of decoding becomes the (slightly more general)

inequality ∥z̄ − v∥ ≤ min𝑥≤𝑛
(
𝛿 (𝑘+ℓ)𝑛−𝑥
𝛽

𝑞
𝑘𝑛

(𝑘+ℓ)𝑛−𝑥
)
As such, we need to enforce the condition:

𝐵2 + 2𝜈w−1
√
𝑘𝑛 ≤ min

ℓ𝑛≤𝑚≤(𝑘+ℓ)𝑛

(
𝑞

𝑘 𝑛
𝑚 · 𝛿𝑚𝛽

)
, (26)

The term 2𝜈w−1
√
𝑘 𝑛 in Eq. (26) represents the slight wiggle room available to the adversary due

to the rounding in the computation of h. 𝐵2 is computed in Section 2.6.2.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 49

Challenge space. We need the hash function𝐻 to be second preimage resistant. To guarantee
this we ensure that |C| > 2𝜅 . Considering how C is defined in Section 2.4.6 it is enough to set 𝜔
such that: (

𝑛

𝜔

)
· 2𝜔 ≥ 2𝜅 .

4.3.6 Leakage of Signatures

For the purpose of this section, we use two different notations for the number of repetitions
when sampling error distributions in the key generation and signing procedures. Indeed, when
considering 𝑡-probing adversaries, these will influence security in different ways. We recall that
coefficients of (s, e) and (r, e′) are sampled from SU(𝑢t,𝑇t) and SU(𝑢w,𝑇w), where𝑇t = 𝑑 · rep and
𝑇w = 𝑑 · rep when no probing is done by the adversary.

Bounding the smooth Rényi divergence. By linearity of the expected value [drh17]:

E[∥𝑐poly · (s, e)∥2] = 𝜔 · E[∥(s, e)∥2] ≤ 𝜔 𝑛 (𝑘 + ℓ)𝑇t 22𝑢t
12

(27)

Since𝑄𝑠 is extremely large, we may take the heuristic
∑
𝑖∈[𝑄𝑠] ∥𝑐

(𝑖)
poly · (s, e)∥

2 ≈ 𝑄𝑠 𝜔 E[∥(s, e)∥2],
where 𝑐 (𝑖)poly is the challenge polynomial in 𝑖-th signature. Combining it with Eq. (27) and Conjec-
ture 1 allows us to bound the smooth Rényi divergence as:

𝑅𝜖Tail𝛼 (P;Q)𝑄𝑠 ≲ exp

(
𝐶RÉnyi ·𝑄𝑠 · 𝛼 · 𝜔 𝑛 (𝑘 + ℓ)𝑇t 22𝑢t

12 ·𝑇w · 22𝑢w

)
,

where𝐶RÉnyi ≈ 6. A 𝑡-probing adversary can decrease𝑇w from𝑑 ·rep to𝑑 ·rep−𝑡 , see Section 4.2.3.
Taking this into account gives this closed form heuristic for the smooth Rényi divergence:

𝑅𝜖Tail𝛼 (P;Q)𝑄𝑠 ≲ exp
(
𝑄𝑠 · 𝛼 · 𝜔 𝑛 (𝑘 + ℓ) 22(𝑢t−𝑢w)

)
, (28)

Number of queries 𝑸𝒔 . At this point, all terms of Eq. (23) are determined except for 𝑄𝑠 and
𝛼 . We first determine the optimal value for 𝛼 . Then we determine the maximal value for𝑄𝑠 such
that Eq. (23) provides a bit-security 𝜅. Let us set 𝑏, 𝑐 > 0 such that:{

exp(−𝑏) = AdvMLWE
B + AdvSelfTargetMSIS

B′ +𝑄𝑠 𝜖Tail,
exp(𝛼 𝑐 𝑄𝑠) = 𝑅𝜖Tail𝛼 (P;Q)𝑄𝑠 .

We take 𝑐 = 𝜔 𝑛 (𝑘 + ℓ) 22(𝑢t−𝑢w) following Eq. (28), and 𝑏 can be computed explicitly from Sec-
tions 4.3.4 and 4.3.5 and Eq. (14). Ignoring terms that are clearly negligible, and assuming the
term 𝑄𝑠 𝜖Tail is negligible in exp(−𝑏), our goal in Eq. (23) is essentially to ensure that:

exp

(
−𝑏 𝛼 − 1

𝛼

)
exp(𝛼 𝑐 𝑄𝑠)/𝑄𝑠 ≤ 2−𝜅 (29)

Let 𝑓 : 𝑥 ↦→ exp(−𝑏 + 2
√
𝑏 𝑐 𝑥)/𝑥 . The left term in Eq. (29) is minimized for 𝛼 =

√
𝑏/(𝑐 𝑄𝑠), in

which case it is equal to 𝑓 (𝑄𝑠).
We now establish 𝑄𝑠 . We require 𝑓 (𝑥) to be upper bounded by 2−𝜅 over {1, . . . , 𝑄𝑠 }. By

computing its derivative, one can check that 𝑓 is non-increasing over
[
1, 1
𝑏𝑐

]
and non-decreasing

over
[
1
𝑏𝑐 ;∞

)
. Since 𝑓 (1) ≤ 2−𝜅 , it suffices to study 𝑓 over

[
1
𝑏𝑐 ;∞

)
. Since 𝑓 is non-decreasing

over this set, 𝑄𝑠 can be computed by dichotomy over
[
1
𝑏𝑐 ;∞

)
.

50 Raccoon

Tail bound 𝝐Tail and number of leaked vectors 𝜼. We use a coarse bound on the 𝐿𝑇w norm:

∥𝑐poly · (s, e)∥𝑇w𝑇w ≤ 𝑛 (𝑘 + ℓ) ∥𝑐poly · (s, e)∥𝑇w∞
≤ 𝑛 (𝑘 + ℓ) (𝜔𝑇t 2

𝑢t−1)𝑇w (30)

Combining Eqs. (14) and (30), with 𝑇t ≤ 2𝑇w, provides a heuristic approximation for 𝜖Tail:

𝜖Tail ≈
𝛼𝑇w ∥𝑐poly · (s, e)∥𝑇w𝑇w

2𝑢w ·𝑇w 𝑇w!
≤ 𝑛 (𝑘 + ℓ)
√
2𝜋 𝑇w

(
𝛼 𝑒 𝜔 2𝑢t−𝑢w−2

)𝑇w
(31)

Note that for our parameter sets,𝑇w = rep ·𝑑 − 𝑡 takes the following values: 𝑇w = 8, 7, 5, 25, 17, 93
for 𝑑 = 1, 2, 4, 8, 16, 32, respectively. If 𝜖Tail ≤ 2−𝜅 , we can directly use Theorem 1. If 𝜖Tail > 2−𝜅 ,
then we argue security via ExtMLWE, as discussed in Section 4.1.4. We may approximate the
Bernoulli distribution by a Poisson distribution of parameter 2𝑄𝑠 𝜖Tail. Note that the Poisson
distribution dominates the Bernoulli distribution on their tail, therefore we may safely rely on
Poisson tail bounds. Except with probability < 2−𝜅 , the number of individual leaked coefficients
will less than 𝜂 as long as:

(2𝑄𝑠 𝜖Tail)𝜂
𝜂!

≲ 2−𝜅 (32)

Concretely, upper bounds on 𝜂 (with overwhelming probability) for our parameter sets is given
by Table 7. We study the corresponding ExtMLWE instance in Section 4.3.7.

Table 7: Upper bound on the number of leaked vectors 𝜂 as a function of 𝑑 and 𝜅

1 2 4 8 16 32
128 - - 1 - - -
192 1 1 3 - - -
256 1 2 4 - - -

4.3.7 On the ExtMLWE Assumption.

In Section C.2, we present a dimension-preserving reduction from the unstructured variant of the
problem (ExtLWE) to regular LWE, providing evidence of its asymptotic difficulty. The analysis of
this problem is needed to take into the leaks induced by the BAD events discussed in Section 4.1.4.
Now, we turn our attention to estimating the practical security of this problem by exploiting the
information leakage introduced by the matrix M. Similar to our analysis in Section 4.3.4, we
rely on investigating the hardness of the integer descended problem, which corresponds to an
(unstructured) ExtLWE instance.

Like previously, given an instance of ExtMLWE𝑞,ℓ,𝑘,D,F as:(
A, b,M,M · coeff

([
s
e

]))
,

our goal is to recover a short vector in the latticeL = x ∈ Z𝑑 : Dx = 0 (mod 𝑞). Here, the matrix
D = (rot(A)[1:𝑚] |I𝑚 | coeff (b)[1:𝑚]) has dimensionsD ∈ Z𝑚×𝑑 , where𝑑 = 𝑛 ·ℓ+𝑚+1 and𝑚 ≤ 𝑛 ·𝑘 .
Finding vec(𝑠1), vec(𝑠2) ∈ Z𝑛 ·ℓ × Z𝑛·𝑘 from the instance (rot(A), vec(t)), where vec(·) maps a
vector of ring elements to the vector obtained by concatenating the coefficients of its coordinates,
and rot(A) ∈ Z𝑛·𝑘×𝑛 ·ℓ , is obtained by replacing all entries 𝑎 ∈ R𝑞 of A by the 𝑛 ×𝑛 matrix whose
𝑓 -th column is (𝑋 𝑓 −1 · 𝑎𝑖 𝑗). The hint part of the problem aligns well with this conversion to an
LWE instance over Z. In our definition, matrixM acts on the coefficient embedding of the vector
(s, e), which, in hindsight, is the embedding used to construct L.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 51

To exploit the leakage, remark that each line of M gives rise to an equation of the form
⟨m, (s|e)⟩ = 𝛼 , where m is a vector from M and 𝛼 is an integer. Consequently, we only need to
search for solutions in the hyperplane coset ker(⟨m, ·⟩) − 𝛼 intersected with L. As discussed in
[DDGR20], we can avoid dealingwith lattice cosets by embedding the lattice into {(u, 1), |, u ∈ L}
and considering the intersection with the kernel of the map x ↦→ ⟨(m,−𝛼), x⟩.

Remark 2. Overall, this technique bears striking resemblance to the framework developed in
[DDGR20]. Notably, we leverage the leaky estimator they provide to incorporate these hints
into the conventional primal LWE estimation.

4.3.8 Putting it All Together.

In order to ensure the desired level of security, we can now substitute each term in Eq. (23) and
determine the appropriate parameters accordingly. However, it is worth noting that the effects of
these parameters are highly intertwined, and there is no apparent straightforward order in which
to optimize them. To facilitate this optimization process, we have compiled a table outlining the
dependencies of each parameter, as shown below:

Table 8: Impact of parameters on security and performance metrics. Terminology: ↗↗ (resp. ↗,
=, ↘, ↘↘) indicates that increasing this parameter has a very positive (resp. positive, negative,
neutral, very negative) impact on the considered metric.

Key rec. (§4.3.4) Forgery (§4.3.5) Leakage (§ 4.3.6) Size of vk Size of sig
(MLWE) (SelfTargetMSIS) 𝜖Tail 𝑅𝜖Tail𝛼

𝑞 ↘ ↗↗ = = ↘ ↘
𝑢t ↗↗ = ↘↘ ↘↘ ↗ ↘
𝑢w = ↘↘ ↗↗ ↗↗ = ↘

𝑑 · rep ↗ ↘ ↗↗ = = ↘
𝜈t = ↘ = = ↗↗ =

𝜈w = ↘ = = = ↗↗
𝑛 ↗↗ ↗↗ ↘ ↘ ↘↘ ↘↘
ℓ ↗↗ ↗ ↘ ↘ = ↘↘
𝑘 = ↗↗ ↘ ↘ ↘↘ ↘
𝜔 = ↘ ↘ ↘ = =

The selection of parameters becomes an optimization problem involving these ten parame-
ters. The objective is to ensure the desired level of security while minimizing the overall size,
represented by the sum of the sizes of |vk| + |𝜎 |. To address this problem practically, the condi-
tions are hard-encoded, and an almost exhaustive exploration of the search space is performed.
Practical figures are given in Table 9, where we very conservatively estimated the securities with
the maximum possible number of leakage vectors.

52 Raccoon

Table 9: Security of the Raccoon family (bitsec are given for the classical/quantum regime)

Raccoon-128-x Raccoon-192-x Raccoon-256-x
Key recovery (MLWE) [bits] 134/115 193/166 284/243

Forgery (MSIS) [bits] 134/114 214/183 292/250
Number of queries 255 251 253

Leaked vectors ≤ 1 ≤ 3 ≤ 4

Remark 3. Since in practice the conditions detailed in are verified by the parameters we also get
the strong sEUF-CMA security guarantee as byproduct of our conservative choices of design. A
discussion on the asymptotic realization of this property is given in Appendix D.4.

4.4 Additional “BUFF” Security Properties

Cramers et al. [CDF+21] discuss three additional security properties that go beyond the security
requirement of existentially unforgeable digital signatures with respect to an adaptive chosen
message attack (EUF-CMA). These properties are not necessarily implied by EUF-CMA or by
each other. However, it is easy to see that Raccoon has these “BUFF” properties:

Proposition. Raccoon provides exclusive ownership (M-S-UEO), message-bound signatures (MBS),
and non re-signability (NR), assuming that the hash functions used are collision-resistant and non-
malleable.

Due to structural similarities between Raccoon and Dilithium, we refer to [CDF+21, Propo-
sition V.1]8 and related lemmas for detailed security arguments for all three properties. To
see that the necessary conditions are met for Raccoon, we observe that the 𝑐hash component
of Raccoon signature (Algorithm 2) is composed as 𝑐hash = ChalHash(w, 𝜇) (Line 10) where
𝜇 = H(H(vk)∥msg) (Line 2). Since both ChalHash and H are 2𝜅-bit collision-resistant hashes, the
composition 𝑐hash in a Raccoon signature is collision-resistant in relation to both vk and msg.

We can also examine the BUFF transformation [CDF+21, Figure 5] and its lemmas; we see
that Raccoon’s 𝜇 is functionally equivalent to the signed message digest ℎ in BUFF and that 𝜇 is
contained in the signature via 𝑐hash.

8The Dilithium security argument is Proposition 6.1. in the January 2023 IACR e-Print version of [CDF+21].

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 53

Bibliography

[AA16] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE to LWR.
Cryptology ePrint Archive, Report 2016/589, 2016. https://eprint.iacr.org/2016/589.

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob
Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel
Smith-Tone, and Yi-Kai Liu. NISTIR 8413 – Status Report on theThird Round of the NIST Post-
Quantum Cryptography Standardization Process, 2022. https://doi.org/10.6028/NIST.IR.
8413.

[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia Kuzovkova,
Joost Renes, Markus Schönauer, Tobias Schneider, François-Xavier Standaert, and Chris-
tine van Vredendaal. Leveling Dilithium against leakage: Revisited sensitivity analysis and
improved implementations. Cryptology ePrint Archive, Report 2022/1406, 2022. https:
//eprint.iacr.org/2022/1406.

[ABD+14] Massimo Alioto, Simone Bongiovanni, Milena Djukanovic, Giuseppe Scotti, and Alessandro
Trifiletti. Effectiveness of leakage power analysis attacks on DPA-resistant logic styles under
process variations. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(2):429–442,
2014. doi:10.1109/TCSI.2013.2278350.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, EamonnW. Postlethwaite,
and Marc Stevens. The general sieve kernel and new records in lattice reduction. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
717–746. Springer, Heidelberg, May 2019. doi:10.1007/978-3-030-17656-3_25.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key ex-
change - A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016,
pages 327–343. USENIX Association, August 2016.

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August
2016. doi:10.1007/978-3-662-53015-3_12.

[AP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM security for identity-based en-
cryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 334–352. Springer, Heidelberg, May 2012. doi:10.1007/
978-3-642-30057-8_20.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015. URL: https://doi.org/10.
1515/jmc-2015-0016 [cited 2022-08-02], doi:doi:10.1515/jmc-2015-0016.

[ARM22] ARM. PSA cryptography API 1.1. Arm Document number: IHI 0086, Febru-
ary 2022. URL: https://arm-software.github.io/psa-api/crypto/1.1/IHI0086-PSA_
Certified_Crypto_API-1.1.2.pdf.

[ASY22] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold
signatures, revisited. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.Woodruff, editors,
ICALP 2022, volume 229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022. doi:10.4230/
LIPIcs.ICALP.2022.8.

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes Buchmann, Ed-
ward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun Polat, Jefferson E. Ricardini,
and Gustavo Zanon. qTESLA. Technical report, National Institute of Standards and Tech-
nology, 2017. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions.

https://eprint.iacr.org/2016/589
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2022/1406
https://doi.org/10.1109/TCSI.2013.2278350
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://arm-software.github.io/psa-api/crypto/1.1/IHI0086-PSA_Certified_Crypto_API-1.1.2.pdf
https://arm-software.github.io/psa-api/crypto/1.1/IHI0086-PSA_Certified_Crypto_API-1.1.2.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

54 Raccoon

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-
order masking. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.
doi:10.1145/2976749.2978427.

[BBD+23] Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr, Benjamin Grégoire,
Yu-Hsuan Huang, Andreas Hülsing, Yi Lee, and Xiaodi Wu. Fixing and mechanizing the secu-
rity proof of fiat-shamir with aborts and dilithium. Cryptology ePrint Archive, Paper 2023/246,
2023. https://eprint.iacr.org/2023/246. URL: https://eprint.iacr.org/2023/246.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa
Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at any or-
der. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 354–384. Springer, Heidelberg, April / May 2018. doi:10.1007/
978-3-319-78375-8_12.

[BBE+19] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa Rossi, and Mehdi
Tibouchi. GALACTICS: Gaussian sampling for lattice-based constant- time implementation of
cryptographic signatures, revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 2147–2164. ACM Press, November 2019.
doi:10.1145/3319535.3363223.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi Tibouchi.
LWEwithout modular reduction and improved side-channel attacks against BLISS. InThomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages
494–524. Springer, Heidelberg, December 2018. doi:10.1007/978-3-030-03326-2_17.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, andThijs Laarhoven. New directions in nearest neigh-
bor searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th SODA,
pages 10–24. ACM-SIAM, January 2016. doi:10.1137/1.9781611974331.ch2.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based
on learning with errors. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages
28–47. Springer, Heidelberg, February 2014. doi:10.1007/978-3-319-04852-9_2.

[BJRW23] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen. On the
hardness of module learning with errors with short distributions. Journal of Cryptology,
36(1):1, January 2023. doi:10.1007/s00145-022-09441-3.

[BK15] Elaine Barker and John Kelsey. Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. NIST Special Publication SP 800-90A Revision 1, June
2015. doi:10.6028/NIST.SP.800-90Ar1.

[BKM+22] Elaine Barker, John Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sönmez Turan. Rec-
ommendation for Random Bit Generator (RBG) Constructions (3rd Draft). Draft NIST Special
Publication SP 800-90C, September 2022. doi:10.6028/NIST.SP.800-90C.3pd.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, edi-
tors, 45th ACM STOC, pages 575–584. ACM Press, June 2013. doi:10.1145/2488608.2488680.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.
doi:10.1145/1180405.1180453.

[CAD+20] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson, Morris J. Dworkin,
and Carl A.Miller. Recommendation for Stateful Hash-Based Signature Schemes. NIST Special
Publication SP 800-208, October 2020. doi:10.6028/NIST.SP.800-208.

https://doi.org/10.1145/2976749.2978427
https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1007/978-3-030-03326-2_17
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90C.3pd
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.6028/NIST.SP.800-208

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 55

[CDF+21] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing sig-
nature schemes beyond unforgeability and the case of post-quantum signatures. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages
1696–1714. IEEE, 2021. URL: https://eprint.iacr.org/2020/1525, doi:10.1109/SP40001.
2021.00093.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala.
Conversion from arithmetic to Boolean masking with logarithmic complexity. In Gregor
Leander, editor, FSE 2015, volume 9054 of LNCS, pages 130–149. Springer, Heidelberg, March
2015. doi:10.1007/978-3-662-48116-5_7.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion
between Boolean and arithmetic masking of any order. In Lejla Batina and Matthew Robshaw,
editors, CHES 2014, volume 8731 of LNCS, pages 188–205. Springer, Heidelberg, September
2014. doi:10.1007/978-3-662-44709-3_11.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound ap-
proaches to counteract power-analysis attacks. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 398–412. Springer, 1999. doi:10.1007/3-540-48405-1_26.

[CL21] André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks. In Mehdi
Tibouchi andHuaxiongWang, editors,ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
63–91. Springer, Heidelberg, December 2021. doi:10.1007/978-3-030-92068-5_3.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Çetin Kaya Koç and Christof Paar, editors, CHES’99, volume 1717 of LNCS, pages
292–302. Springer, Heidelberg, August 1999. doi:10.1007/3-540-48059-5_25.

[CPS+20] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet, and Keita Xa-
gawa. ModFalcon: Compact signatures based on module-NTRU lattices. In Hung-Min Sun,
Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe Ateniese, editors, ASIACCS 20, pages 853–866.
ACM Press, October 2020. doi:10.1145/3320269.3384758.

[Cri22] Common Criteria. Common criteria for information technology security evaluation. part 5:
Pre-defined packages of security requirements. CCMB-2022-11-005, November 2022. https:
//www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently composing masked
gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555,
2020. doi:10.1109/TIFS.2020.2971153.

[Csi63] Imre Csiszár. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Be-
weis der Ergodizitat von Markoffschen Ketten. Magyar. Tud. Akad. Mat. Kutató Int. Közl,
8:85–108, 1963.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with side informa-
tion: Attacks and concrete security estimation. In Daniele Micciancio andThomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 329–358. Springer, Heidelberg,
August 2020. doi:10.1007/978-3-030-56880-1_12.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signa-
tures and bimodal Gaussians. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 40–56. Springer, Heidelberg, August 2013. doi:10.1007/
978-3-642-40041-4_3.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2:
Lightweight authenticated encryption and hashing. Journal of Cryptology, 34(3):33, July 2021.
doi:10.1007/s00145-021-09398-9.

https://eprint.iacr.org/2020/1525
https://doi.org/10.1109/SP40001.2021.00093
https://doi.org/10.1109/SP40001.2021.00093
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-030-92068-5_3
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1145/3320269.3384758
https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/s00145-021-09398-9

56 Raccoon

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling
in lyubashevsky’s signature scheme. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 34–64. Springer, Heidelberg, December
2022. doi:10.1007/978-3-031-22972-5_2.

[DFPS23] JulienDevevey, Pouria Fallahpour, Alain Passelègue, andDamien Stehlé. A detailed analysis of
fiat-shamir with aborts. Cryptology ePrint Archive, Report 2023/245, 2023. https://eprint.
iacr.org/2023/245.

[DFS19] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking security
proofs concrete (or how to evaluate the security of any leaking device), extended version.
Journal of Cryptology, 32(4):1263–1297, October 2019. doi:10.1007/s00145-018-9277-0.

[DKL+18a] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
839. doi:10.13154/tches.v2018.i1.238-268.

[DKL+18b] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018. doi:10.13154/tches.v2018.i1.
238-268.

[dPPRS23] Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O. Saarinen. High-order
masking of lattice signatures in quasilinear time. In 44th IEEE Symposium on Security and
Privacy, SP 2023, San Francisco, CA, USA, 22-25 May 2023, pages 1152–1169. IEEE, 2023. doi:
10.1109/SP46215.2023.00160.

[drh17] drhab. Expected value of square of euclidean norm of a gaussian random vector. Mathemat-
ics Stack Exchange, 2017. Author profile: https://math.stackexchange.com/users/75923/
drhab. Version: 2017-11-22. URL: https://math.stackexchange.com/q/2530567.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
125–145. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78381-9_5.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Side-channel at-
tacks on BLISS lattice-based signatures: Exploiting branch tracing against strongSwan and
electromagnetic emanations in microcontrollers. In Bhavani M.Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1857–1874. ACM Press, Octo-
ber / November 2017. doi:10.1145/3133956.3134028.

[EJK20] Thomas Espitau, Antoine Joux, and Natalia Kharchenko. On a dual/hybrid approach to small
secret LWE - A dual/enumeration technique for learning with errors and application to se-
curity estimates of FHE schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj
Prabhakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 440–462. Springer, Hei-
delberg, December 2020. doi:10.1007/978-3-030-65277-7_20.

[EK20] Thomas Espitau and Paul Kirchner. The nearest-colattice algorithm. Cryptology ePrint
Archive, Report 2020/694, 2020. https://eprint.iacr.org/2020/694.

[FDK20] Apostolos P. Fournaris, Charis Dimopoulos, and Odysseas G. Koufopavlou. Profiling
Dilithium Digital Signature Traces for Correlation Differential Side Channel Attacks. In Alex
Orailoglu, Matthias Jung, and Marc Reichenbach, editors, Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation - 20th International Conference, SAMOS 2020, Samos, Greece,
July 5-9, 2020, Proceedings, volume 12471 of Lecture Notes in Computer Science, pages 281–294.
Springer, 2020. doi:10.1007/978-3-030-60939-9_19.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987. doi:10.1007/3-540-47721-7_12.

https://doi.org/10.1007/978-3-031-22972-5_2
https://eprint.iacr.org/2023/245
https://eprint.iacr.org/2023/245
https://doi.org/10.1007/s00145-018-9277-0
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1109/SP46215.2023.00160
https://doi.org/10.1109/SP46215.2023.00160
https://math.stackexchange.com/users/75923/drhab
https://math.stackexchange.com/users/75923/drhab
https://math.stackexchange.com/q/2530567
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1007/978-3-030-65277-7_20
https://eprint.iacr.org/2020/694
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/3-540-47721-7_12

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 57

[Glo21] GlobalPlatform. TEE internal core API specification – public release v1.3.1. Document
Reference: GPD_SPE_010, July 2021. URL: https://globalplatform.org/specs-library/
tee-internal-core-api-specification/.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In Emmanuel Prouff and Patrick Schau-
mont, editors, CHES 2012, volume 7428 of LNCS, pages 530–547. Springer, Heidelberg, Septem-
ber 2012. doi:10.1007/978-3-642-33027-8_31.

[GMRR22] Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi. The hidden paral-
lelepiped is back again: Power analysis attacks on falcon. IACR TCHES, 2022(3):141–164, 2022.
doi:10.46586/tches.v2022.i3.141-164.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic masking. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001, volume 2162 of LNCS,
pages 3–15. Springer, Heidelberg, May 2001. doi:10.1007/3-540-44709-1_2.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked implementation of
qtesla. In Sonia Belaïd and Tim Güneysu, editors, Smart Card Research and Advanced Appli-
cations - 18th International Conference, CARDIS 2019, Prague, Czech Republic, November 11-13,
2019, Revised Selected Papers, volume 11833 of Lecture Notes in Computer Science, pages 74–91.
Springer, 2019. doi:10.1007/978-3-030-42068-0_5.

[HT19] Michael Hutter and Michael Tunstall. Constant-time higher-order Boolean-to-arithmetic
masking. Journal of Cryptographic Engineering, 9(2):173–184, June 2019. doi:10.1007/
s13389-018-0191-z.

[ISO19] ISO. It security techniques – test tool requirements and test tool calibration methods for
use in testing non-invasive attack mitigation techniques in cryptographic modules – part 1:
Test tools and techniques. Standard ISO/IEC 20085-1:2019(E), International Organization for
Standardization, 2019. URL: https://www.iso.org/standard/70081.html.

[ISO20] ISO. IT security techniques – test tool requirements and test tool calibration methods for
use in testing non-invasive attack mitigation techniques in cryptographic modules – part
2: Test calibration methods and apparatus. Standard ISO/IEC 20085-2:2020(E), International
Organization for Standardization, 2020. URL: https://www.iso.org/standard/70082.html.

[ISO22] ISO. Information technology – security techniques – security requirements for cryptographic
modules. Standard ISO/IEC WD 19790:2022(E), International Organization for Standardiza-
tion, 2022.

[ISO23] ISO. Information technology – security techniques – testing methods for the mitigation
of non-invasive attack classes against cryptographic modules. Draft International Standard
ISO/IEC DIS 17825:2022(E), International Organization for Standardization, 2023.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481.
Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_27.

[IUH22] Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1521–1535.
ACM Press, November 2022. doi:10.1145/3548606.3560579.

[KA21] Emre Karabulut and Aydin Aysu. FALCON Down: Breaking FALCON Post-Quantum Sig-
nature Scheme through Side-Channel Attacks. In 58th ACM/IEEE Design Automation Con-
ference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021, pages 691–696. IEEE, 2021.
doi:10.1109/DAC18074.2021.9586131.

[KAA21] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-Trace Side-Channel Attacks on 𝜔-
Small Polynomial Sampling: With Applications to NTRU, NTRU Prime, and CRYSTALS-
DILITHIUM. In IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2021, Tysons Corner, VA, USA, December 12-15, 2021, pages 35–45. IEEE, 2021. doi:
10.1109/HOST49136.2021.9702284.

https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.1007/s13389-018-0191-z
https://doi.org/10.1007/s13389-018-0191-z
https://www.iso.org/standard/70081.html
https://www.iso.org/standard/70082.html
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284

58 Raccoon

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Johannes Buch-
mann. Differential power analysis of XMSS and SPHINCS. In Junfeng Fan and Benedikt
Gierlichs, editors, COSADE 2018, volume 10815 of LNCS, pages 168–188. Springer, Heidelberg,
April 2018. doi:10.1007/978-3-319-89641-0_10.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Heidel-
berg, April / May 2018. doi:10.1007/978-3-319-78372-7_18.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-
knowledge proofs via one-time commitments. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 215–241. Springer, Heidelberg, May 2021. doi:10.1007/
978-3-030-75245-3_9.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography.
InThomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 35–54. Springer, Heidelberg, May 2013. doi:10.1007/978-3-642-38348-9_3.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for mod-
ule lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015. doi:10.1007/
s10623-014-9938-4.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.
Springer, Heidelberg, December 2009. doi:10.1007/978-3-642-10366-7_35.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval andThomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidel-
berg, April 2012. doi:10.1007/978-3-642-29011-4_43.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Masking
Dilithium - efficient implementation and side-channel evaluation. In Robert H. Deng, Valérie
Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS,
pages 344–362. Springer, Heidelberg, June 2019. doi:10.1007/978-3-030-21568-2_17.

[MR02] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature schemes.
Journal of Cryptology, 15(1):1–18, January 2002. doi:10.1007/s00145-001-0005-8.

[MRS22] Loïc Masure, Olivier Rioul, and François-Xavier Standaert. A nearly tight proof of duc
et al.’s conjectured security bound for masked implementations. In Ileana Buhan and To-
bias Schneider, editors, Smart Card Research and Advanced Applications - 21st International
Conference, CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected Papers, vol-
ume 13820 of Lecture Notes in Computer Science, pages 69–81. Springer, 2022. URL: https:
//eprint.iacr.org/2022/600, doi:10.1007/978-3-031-25319-5_4.

[Muk15] Samrat Mukhopadhyay. Decreasing ratio of two Partial Sums. Mathematics Stack
Exchange, 2015. Author profile: https://math.stackexchange.com/users/83973/
samrat-mukhopadhyay. Version: 2015-02-09. URL: https://math.stackexchange.com/q/
1140573.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert. Profiling
side-channel attacks on Dilithium: A small bit-fiddling leak breaks it all. Cryptology ePrint
Archive, Report 2022/106, 2022. https://eprint.iacr.org/2022/106.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 820–849. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49890-3_31.

https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-78372-7_18
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/s00145-001-0005-8
https://eprint.iacr.org/2022/600
https://eprint.iacr.org/2022/600
https://doi.org/10.1007/978-3-031-25319-5_4
https://math.stackexchange.com/users/83973/samrat-mukhopadhyay
https://math.stackexchange.com/users/83973/samrat-mukhopadhyay
https://math.stackexchange.com/q/1140573
https://math.stackexchange.com/q/1140573
https://eprint.iacr.org/2022/106
https://doi.org/10.1007/978-3-662-49890-3_31

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 59

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Fed-
eral Information Processing Standards Publication FIPS 202, August 2015. doi:10.6028/NIST.
FIPS.202.

[NIS19] NIST. Security Requirements for Cryptographic Modules. Federal Information Processing
Standards Publication FIPS 140-3, March 2019. doi:10.6028/NIST.FIPS.140-3.

[NIS22] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography
Standardization Process. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022.

[NIS23a] NIST. Digital Signature Standard (DSS). Federal Information Processing Standards Publication
FIPS 186-5, February 2023. doi:10.6028/NIST.FIPS.186-5.

[NIS23b] NIST. NIST IR 8214C ipd: NIST First Call for Multi-Party Threshold Schemes (Initial Public
Draft). https://doi.org/10.6028/NIST.IR.8214C.ipd, 2023. doi:doi:10.6028/NIST.IR.
8214C.ipd.

[OO98] KazuoOhta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369.
Springer, Heidelberg, August 1998. doi:10.1007/BFb0055741.

[OPW11] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryption. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 525–542. Springer, Heidelberg,
August 2011. doi:10.1007/978-3-642-22792-9_30.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be: Attacking
strongSwan’s implementation of post-quantum signatures. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1843–1855. ACM
Press, October / November 2017. doi:10.1145/3133956.3134023.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhen-
fei Zhang. FALCON. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the Rényi divergence. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS,
pages 347–374. Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70694-8_13.

[Pre23] Thomas Prest. A Key-Recovery Attack Against Mitaka in the t-Probing Model. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages 205–
220, Cham, 2023. Springer Nature Switzerland.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. doi:10.1007/s001450010003.

[Saa23] Markku-Juhani O. Saarinen. WrapQ: Side-channel secure key management for post-quantum
cryptography. IACR ePrint 2022/1499, April 2023. URL: https://eprint.iacr.org/2022/
1499.

[SOG22] SOGIS. Application of attack potential to smartcards and similar devices. Joint Interpretation
Library – Version 3.2, November 2022. https://www.sogis.eu/documents/cc/domains/sc/
JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf.

[TBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, and Mike
Boyle. Recommendation for the Entropy Sources Used for Random Bit Generation. NIST
Special Publication SP 800-90B, January 2018. doi:10.6028/NIST.SP.800-90B.

[YD17] Yang Yu and Léo Ducas. Second order statistical behavior of LLL and BKZ. In Carlisle Adams
and Jan Camenisch, editors, SAC 2017, volume 10719 of LNCS, pages 3–22. Springer, Heidel-
berg, August 2017. doi:10.1007/978-3-319-72565-9_1.

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.140-3
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/doi:10.6028/NIST.IR.8214C.ipd
https://doi.org/doi:10.6028/NIST.IR.8214C.ipd
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1145/3133956.3134023
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-319-70694-8_13
https://doi.org/10.1007/s001450010003
https://eprint.iacr.org/2022/1499
https://eprint.iacr.org/2022/1499
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1007/978-3-319-72565-9_1

60 Raccoon

[ZLYW23] Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved Power Analysis Attacks on
Falcon. Cryptology ePrint Archive, Paper 2023/224, 2023. URL: https://eprint.iacr.org/
2023/224.

[ZSS+21] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard, and Amir Moradi.
Low-latency keccak at any arbitrary order. IACR TCHES, 2021(4):388–411, 2021. https:
//tches.iacr.org/index.php/TCHES/article/view/9070. doi:10.46586/tches.v2021.i4.
388-411.

https://eprint.iacr.org/2023/224
https://eprint.iacr.org/2023/224
https://tches.iacr.org/index.php/TCHES/article/view/9070
https://tches.iacr.org/index.php/TCHES/article/view/9070
https://doi.org/10.46586/tches.v2021.i4.388-411
https://doi.org/10.46586/tches.v2021.i4.388-411

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 61

A Rényi Divergence Arguments for Sums of Discrete Uniform
Variables

This section provides a collection of results related to sums of discrete uniform variables.

A.1 The Sum of Discrete Uniform Variables

Definition 6. Let 𝑁,𝑇 ≥ 1 be integers. We note 𝑃𝑁,𝑇 the distribution corresponding to the sum of
𝑇 independent and identically distributed (iid) random variables (𝑋𝑖)𝑖∈[𝑇] , each 𝑋𝑖 being uniformly
distributed in [𝑁].

The support of 𝑃𝑁,𝑇 is [𝑇 (𝑁 − 1) + 1]. Lemma 2 links the cumulative distribution function
(CDF) of 𝑃𝑁,𝑇 and the probability distribution function (PDF) of 𝑃𝑁,𝑇+1.

Lemma 2. For any 𝑥 ≥ 0, 𝑃𝑁,𝑇+1(𝑥) = 1
𝑁 𝑃𝑁,𝑇 ({max(0, 𝑥 − 𝑁 + 1), . . . , 𝑥}).

Proof. (𝑇 + 1) random variables 𝑋𝑖 sum to 𝑥 if and only if the 𝑇 first sum to 𝑥1, the last one is
equal to 𝑥2, and 𝑥1 + 𝑥2 = 𝑥 . If we note 𝑦 = max(0, 𝑥 − 𝑁 + 1), this is formalized as follows:

𝑃𝑁,𝑇+1(𝑥) =
∑

𝑥1+𝑥2=𝑥
𝑃𝑁,𝑇 (𝑥1) 𝑃𝑁,1(𝑥)

=
1
𝑁

𝑥∑
𝑥1=𝑦

𝑃𝑁,𝑇 (𝑥1)

=
1
𝑁

𝑃𝑁,𝑇 ({𝑦, . . . , 𝑥})

□

Our next lemma provides a neat closed formula for the weight of the tail of 𝑃𝑁,𝑇 .

Lemma 3. For 𝑥 ∈ [𝑁]:

𝑃𝑁,𝑇 ({0, . . . , 𝑥}) =
(
𝑥 +𝑇
𝑥

)
1

𝑁𝑇
=

(
𝑥 +𝑇
𝑇

)
1

𝑁𝑇

By Lemma 2, this implies:

𝑃𝑁,𝑇 (𝑥) =
(
𝑥 +𝑇 − 1
𝑇 − 1

)
1

𝑁𝑇
(33)

Proof. We prove the result by induction on 𝑇 . First, one can check that it is true for 𝑇 ≤ 2. Now,
following the same reasoning as in the proof of Lemma 2, (𝑇 + 1) random variables 𝑋𝑖 sum to a
value ≤ 𝑥 if and only if the𝑇 first sum to a value ≤ 𝑥1, the last one is equal to 𝑥2, and 𝑥1 +𝑥2 = 𝑥 .
This can be formalized as:

𝑃𝑁,𝑇+1({0, . . . , 𝑥}) =
∑

𝑥1+𝑥2=𝑥
𝑃𝑁,𝑇 ({0, . . . , 𝑥1}) 𝑃𝑁,1(𝑥)

=
1

𝑁𝑇+1

∑
𝑥1≤𝑥

(
𝑥1 +𝑇
𝑥1

)
=

1

𝑁𝑇+1

(
𝑥 +𝑇 + 1

𝑥

)
The final equality is due to the hockey-stick identity. □

62 Raccoon

Monotony of 𝒙 → 𝑷𝑵,𝑻 (𝒙 + 𝒄)/𝑷𝑵,𝑻 (𝒙).

The goal of this section is to prove that 𝑃𝑁,𝑇 (𝑥 +𝑐)/𝑃𝑁,𝑇 (𝑥) is non-increasing in 𝑥 . This will later
be useful for computing the smooth Rényi divergence between shifted copies of 𝑃𝑁,𝑇 .

Lemma 4. Let 𝑐 ≥ 0 be an integer. The function

𝑥 ∈ {0, . . . ,𝑇 (𝑁 − 1) − 𝑐} ↦→ 𝑃𝑁,𝑇 (𝑥 + 𝑐)
𝑃𝑁,𝑇 (𝑥)

is non-increasing.

Proof. It suffices to prove Lemma 4 in the special case 𝑐 = 1. The general case follows from the
telescopic product:

𝑃𝑁,𝑇 (𝑥 + 𝑐)
𝑃𝑁,𝑇 (𝑥)

=
𝑃𝑁,𝑇 (𝑥 + 𝑐)

𝑃𝑁,𝑇 (𝑥 + 𝑐 − 1)
× · · · × 𝑃𝑁,𝑇 (𝑥 + 1)

𝑃𝑁,𝑇 (𝑥)
.

For the rest of the proof, let 𝑐 = 1. For 𝑥 < 𝑁 , the statement can be verified using Lemma 3. For
𝑥 ≥ 𝑛, we proceed by induction on 𝑇 . The statement is true for 𝑇 = 1. For 𝑥 ≥ 𝑛, it holds that:

𝑃𝑁,𝑇+1(𝑥) =
∑

𝑥1+𝑥2=𝑥
𝑃𝑁,𝑇 (𝑥1) 𝑃𝑁,1(𝑥2)

=
1
𝑁

𝑁−1∑
𝑐=0

𝑃𝑁,𝑇 (𝑥 − 𝑐)

Therefore the ratio 𝑃𝑁,𝑇+1(𝑥 + 1)/𝑃𝑁,𝑇+1(𝑥) can be written as a ratio of partial sums:

𝑃𝑁,𝑇+1(𝑥 + 1)
𝑃𝑁,𝑇+1(𝑥)

=

∑𝑁−1
𝑐=0 𝑃𝑁,𝑇 (𝑥 + 1 − 𝑐)∑𝑁−1
𝑐=0 𝑃𝑁,𝑇 (𝑥 − 𝑐)

Since the ratio 𝑃𝑁,𝑇 (𝑥 + 1)/𝑃𝑁,𝑇 (𝑥) is non-increasing, this is also the case for the ratio of their
partial sums [Muk15]. □

A.2 Smooth Rényi Divergence Between Shifted Copies of 𝑷𝑵,𝑻

Thegoal of this section is to prove Lemma 1. We first partition Supp(𝑃)∪Supp(𝑄) in five sections,
as illustrated in Figure 4:

Tails. The tails are 𝑇ℓ = {0, . . . , 𝜏 − 1} and 𝑇𝑟 = {𝑇 (𝑁 − 1) + 𝑐 − 𝜏 + 1, . . . ,𝑇 (𝑁 − 1) + 𝑐}. By
symmetry, 𝑃 (𝑇ℓ) = 𝑄 (𝑇𝑟). Moreover, 𝜏 is chosen such that 𝑃 (𝑇ℓ) ≤ 𝜖 .

Sides. The sides are 𝑆ℓ = {𝜏, . . . , 𝑁 −1} and 𝑆𝑟 = {(𝑇 −1)(𝑁 −1)+𝑐+1, . . . ,𝑇 (𝑁 −1)+𝑐−𝜏}. Over
the sides, 𝑃 (𝑥) and𝑄 (𝑥) can be computed explicitly, which allows computing precise bounds on
partial Rényi divergence sums.

Head. The head is𝐻 = {𝑁, . . . , (𝑇 −1) (𝑁 −1) +𝑐}. Over the head, the ratio 𝑃/𝑄 is constrained
in a very narrow interval, which allows bounding the partial Rényi divergence sum over𝐻 using
generic results.

Informally speaking, our proof strategy is to separately bound the statistical distance over the
tails (Appendix A.2.1), and the partial Rényi divergence over the sides (Appendix A.2.2) and head
(Appendix A.2.3). The smooth Rényi divergence between 𝑃 and 𝑄 is obtained (Appendix A.2.4)
as a simple consequence of these separate bounds.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 63

A.2.1 Selecting 𝑷 ′ and 𝑸 ′

Let 𝜏 > 0 such that (𝜏+𝑇)
𝑇

𝑇 !𝑁𝑇 ≤ 𝜖 . By Lemma 3, we can bound the weight of 𝑃 (resp. 𝑄) over the
left (resp. right) tail: 𝑃 (𝑇ℓ) = 𝑄 (𝑇𝑟) ≤ 𝜖 .

Let 𝑄 ′ = 𝑄 , and 𝑃 ′ be such that 𝑃 ′(𝑥) = 𝑄 (𝑥) if 𝑥 ∈ 𝑇ℓ ⊔ 𝑇𝑟 , otherwise 𝑃 ′(𝑥) = 𝑃 (𝑥). This
implies ΔSD(𝑃 ′, 𝑃) ≤ 𝜖 and ΔSD(𝑄 ′, 𝑄) = 0.

A.2.2 Partial Sum Over the Sides

We now compute partial Rényi divergences sums over the sides. This is perhaps the most tedious
part of our overall proof, as we computed this sum explicitly, as opposed to relying on more
generic bounds.

Lemma 5. Let𝑇 ≥ 2, 𝛼 ≥ 4, 𝜏, 𝑐 ≥ 0 be such that 𝛼 𝑐 ≤ 𝜏 . Let 𝑎 = (𝑇 −1) 𝛼 𝑐 and assume 𝑎 = 𝑜 (𝑁).
Then: ∑

𝑥∈𝑆ℓ⊔𝑆𝑟

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1

𝑇 !

(
2 + 𝑇

𝑇 − 2
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
. (34)

Proof. Without loss of generality, we assume 𝑐 > 0, as the result is otherwise straightforward.
We focus on the left side 𝑆ℓ . By computing their derivatives, one can see that:

𝑥 ↦→
(𝑥 + 𝑐

𝑥

)𝛼
𝑥 is non-decreasing over [(𝛼 − 1)𝑐;+∞) (35)

𝑓𝑎,𝑇 : 𝑥 ↦→ exp
(𝑎
𝑥

)
𝑥𝑇 is non-decreasing over [𝛼/𝑇 ;+∞) (36)

In particular, since max((𝛼 − 1) 𝑐, 𝛼/𝑇) ≤ 𝜏 − 𝑐 , they are non-decreasing over [𝜏 − 𝑐;+∞). Since
Lemma 12, Eq. (33) provides exact formulae for 𝑃 (𝑥) and𝑄 (𝑥) on the sides, we can upper bound
each term

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) for 𝑥 ∈ 𝑆ℓ :(

𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) = 1

(𝑇 − 1)!𝑁𝑇

𝑥−𝑐+𝑇−1∏
𝑢=𝑥−𝑐

(𝑢 + 𝑐
𝑢

)𝛼
𝑢

≤ 1

(𝑇 − 1)!𝑁𝑇

(
𝑥 +𝑇 − 1

𝑥 − 𝑐 +𝑇 − 1

) (𝑇−1)𝛼
(𝑥 − 𝑐 +𝑇 − 1)𝑇−1 (37)

≤ 1

(𝑇 − 1)!𝑁𝑇
exp

(
𝑐 (𝑇 − 1)𝛼

𝑥 − 𝑐 +𝑇 − 1

)
(𝑥 − 𝑐 +𝑇 − 1)𝑇−1 (38)

(37) follows from the non-decreasingness of (35), while (38) follows from Bernoulli’s inequality
1 + 𝑥 ≤ exp(𝑥). We now bound the partial Rényi divergence sum over the left side 𝑆ℓ :∑

𝑥∈𝑆ℓ

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1

(𝑇 − 1)!𝑁𝑇

𝑛−𝑐+𝑇−1∑
𝑥=𝜏−𝑐+𝑇−2

exp

(
𝑐 (𝑇 − 1)𝛼

𝑥

)
𝑥𝑇−1

≤ 1

(𝑇 − 1)!𝑁𝑇

𝑁−1∑
𝑥=𝜏

𝑓𝑎,𝑇−1(𝑥) (39)

≤ 1

(𝑇 − 1)!𝑁𝑇

∫ 𝑁

𝜏
𝑓𝑎,𝑇−1(𝑢)𝑑𝑢, (40)

where (39) is implied by 𝑓𝑎,𝑇−1 being non-decreasing, see (36), and (40) bounds a sum by an
integral, by casting it as a Riemann sum and using its monotonicity. Let us note:

𝐹𝑎,𝑇 =
∫ 𝑁

𝜏
𝑓𝑎,𝑇 (𝑢)𝑑𝑢.

64 Raccoon

Our next goal is to bound 𝐹𝑎,𝑇 . An iterated integration by parts gives us:

𝐹𝑎,𝑇 =

[
1

𝑇 + 1 𝑓𝑇+1

]𝑁
𝜏

+ 𝑎

𝑇 + 1 𝐹𝑇−1

=
1

𝑇 + 1

[
𝑓𝑇+1 +

𝑎

𝑇
𝑓𝑡 +

𝑎2

𝑡 (𝑇 − 1) 𝑓𝑇−1 + · · · +
𝑎𝑇−1

𝑇 !
𝑓2

]𝑁
𝜏

+ 𝑎𝑇

(𝑇 + 1)! 𝐹0

Since 𝜏 ≤ 𝑎 and 𝑎 = 𝑜 (𝑁), we can approximate 𝐹𝑎,𝑇 using Taylor series as follows:

𝐹𝑎,𝑇 =
exp(𝑎/𝑁)
𝑇 + 1

(
𝑁𝑇+1 + 𝑎

𝑇
𝑁𝑇 + 𝑎2

𝑇 (𝑇 − 1) 𝑁
𝑇−1 +𝑂 (𝑎3𝑁𝑇−2)

)
=
𝑁𝑇+1

𝑇 + 1

(
1 +

(
1 + 1

𝑇

)
𝑎

𝑁
+ 𝑇 + 1
2(𝑇 − 1)

(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(41)

Combining (40) and (41) gives the partial sum on the left tail:∑
𝑥∈𝑆ℓ

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1

𝑇 !

(
1 +

(
1 + 1

𝑇 − 1

)
𝑎

𝑁
+ 𝑇

2(𝑇 − 2)
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(42)

Applying the same techniques provides a similar bound for the right tail 𝑇𝑟 .∑
𝑥∈𝑆𝑟

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1

𝑇 !

(
1 −

(
1 + 1

𝑇 − 1

)
𝑎

𝑁
+ 𝑇

2(𝑇 − 2)
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(43)

Adding (42) and (43) gives the result.∑
𝑥∈𝑆ℓ⊔𝑆𝑟

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1

𝑇 !

(
2 + 𝑇

𝑇 − 2
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
.

□

A.2.3 Partial Sum Over the Head

Lemma 6. Let 𝑐𝑇 = 𝑜 (𝑁). Then:∑
𝑥∈𝐻

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1 + 𝛼 (𝛼 − 1)

2

(
(𝑐𝑇)2
𝑁 2 +𝑂

(
(𝑐𝑇)3
𝑁 3

))
− 2
𝑇 !

(
1 + 4(𝑐/𝑁)2 +𝑂 ((𝑐/𝑁)4)

)
(44)

Proof. Our goal is to apply [Pre17, Lemma 3]. This lemma requires us to bound the ratio 𝑃 (𝑥)/𝑄 (𝑥)
over 𝐻 = {𝑁, . . . , (𝑇 − 1)(𝑁 − 1) + 𝑐}. Thanks to the monotonicity of this ratio (Lemma 4), we
know that it suffices to bound it at the extremities of 𝐻 .

𝑃 (𝑁)
𝑄 (𝑁) =

𝑁+𝑇−1∏
𝑥=𝑁

𝑥

𝑥 − 𝑐 ≤
(

𝑁

𝑁 − 𝑐

)𝑇
≤ exp

(
𝑐 𝑇

𝑁 − 𝑐

)
(45)

Similarly, by symmetry:

𝑃 ((𝑇 − 1) (𝑁 − 1) + 𝑐)
𝑄 ((𝑇 − 1) (𝑁 − 1) + 𝑐) =

𝑄 (𝑁)
𝑃 (𝑁) ≥ exp

(
− 𝑐 𝑇

𝑁 − 𝑐

)
A second issue is that [Pre17, Lemma 3] provides us the complete Rényi divergence sum over
the full support of a distribution, while we only require a partial sum over 𝐻 . We resolve this by

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 65

assuming that all values 𝑥 ∉ 𝐻 are collapsed into a single value. Note that 𝑃 (Z\𝐻) = 𝑄 (Z\𝐻). If
we note 𝛿 = exp

(𝑐 𝑇
𝑁−𝑐

)
− 1 = 𝑐 𝑇

𝑁 +𝑂
(𝑐𝑇
𝑁

)2, then we obtain:∑
𝑥∈𝐻

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄 (𝑥) ≤ 1 + 𝛼 (𝛼 − 1)𝛿2

2(1 − 𝛿)𝛼+1 −𝑄 (Z\𝐻) (46)

Finally, we can explicitly compute 𝑄 (Z\𝐻) via Lemma 12, and approximate it via Taylor series:

𝑄 (Z\𝐻) = 2
𝑇 !

(
1 + 4(𝑐/𝑁)2 +𝑂 ((𝑐/𝑁)4)

)
□

A.2.4 Proof of Lemma 1

Proof. It suffices to prove Lemma 1 for 𝑐 ≥ 0 since 𝑅𝜖𝛼 (𝑃 ;𝑄) = 𝑅𝜖𝛼 (𝑄 ; 𝑃). We apply Lemma 3 to
compute 𝜖 , and Lemmas 5 and 6 to compute the Rényi divergence sum. □

A.3 Distribution of Extreme Events

Lemma 7 informally states that the distribution of coefficients for which (𝑐polys + r, 𝑐polye + e′) is
“too large” is independent of the secret (s, e). In the context of Raccoon, 𝑀 = 𝑛 (ℓ + 𝑘)𝑄𝑠 and c
is the concatenation of all the vectors 𝑐 [𝑖]poly (s, e), for all 𝑄𝑠 values 𝑐

[𝑖]
poly taken during the game.

Lemma 7. Consider the following:

• c = (𝑐𝑖)𝑖 ∈ Z𝑀 is a vector of integer values;

• 𝛼, 𝜏, 𝑁 ,𝑇 ∈ N satisfy 𝛼 = 𝜔 (1), 𝛼𝑇 = 𝑂 (𝜏), 𝜏 = ∥c∥∞(𝛼 + 2) and 𝑇 ≥ 2;

• Tail = {0, . . . , 𝜏} ⊔ {(𝑁 − 1)𝑇 − 𝜏, . . . , (𝑁 − 1)𝑇 };

For each 𝑖 ∈ [𝑀], we generate 𝑟𝑖 as the sum of𝑇 discrete uniform variables in [𝑁], and set 𝑏𝑖 = 1 if
(𝑐𝑖 + 𝑟𝑖) ∈ Tail, otherwise we set 𝑏𝑖 = 0. Let Pc be the distribution of the vector b = (𝑏𝑖)𝑖 .

Let 𝑝0 = 2𝜏𝑇

𝑇 !𝑁𝑇 = 𝑂 ((𝑇 /𝛼)2) and let Q be the distribution of the𝑀-dimensional vector for which
each coefficient is sampled independently according to the Bernoulli distribution Bern𝑝0 . Note that
𝑝0 ≤ 2 𝜖 , where 𝜖 = (𝜏+𝑇)

𝑇

𝑇 !𝑁𝑇 . We have:

log𝑅𝛼 (Pc;Q) ≤
𝛼 𝑇 4 ∥c∥44 𝜖

4𝜏4
(
1 +𝑂 ((𝑇 /𝛼)2)

)
≤ 𝑀𝑇 4 𝜖

4𝛼3

(
1 +𝑂 ((𝑇 /𝛼)2)

)
.

Proof. We start by studying the one-dimensional case. Let 𝑃𝑐 be the distribution of 𝑐𝑖 + 𝑟𝑖 when
𝑐𝑖 = 𝑐 .

𝑃𝑐 (Tail) =
(
𝜏 − 𝑐 +𝑇

𝑇

)
1

𝑁𝑇
+

(
𝜏 + 𝑐 +𝑇

𝑇

)
1

𝑁𝑇
(47)

=
1

𝑇 !𝑁𝑇

(
𝜏−𝑐+𝑇∏
𝑥=𝜏−𝑐+1

𝑥 +
𝜏+𝑐+𝑇∏
𝑦=𝜏+𝑐+1

𝑦

)
(48)

= 𝑞

(
1 + 𝑇 (𝑇 − 1)𝑐

2

2𝜏2
+𝑂 ((𝑐/𝜏)4)

)
(49)

66 Raccoon

GameEUF-CMA
A (𝜅) → {OK or FAIL}

1: (vk, sk) ← KeyGen(1𝜅)
2: 𝑄Sign B ∅
3: (msg∗, sig∗) ← AOSgn(·) (vk)
4: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign then
5: return FAIL
6: return Verify(sig∗,msg∗, vk)

OSgn(msg) → sig
1: sig← Sign(sk,msg)
2: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
3: return sig

GamesEUF-CMA
A (𝜅) → {OK or FAIL}

1: (vk, sk) ← KeyGen(1𝜅)
2: 𝑄Sign B ∅
3: (msg∗, sig∗) ← AOSgn(·) (vk)
4: if (msg∗, sig∗) ∈ 𝑄Sign then
5: return FAIL
6: return Verify(sig∗,msg∗, vk)

Figure 8: Existential (EUF-CMA) and strong-existential (sEUF-CMA) unforgeability under cho-
sen message attacks security games for digital signatures. In both games, the signing oracle
OSgn remains the same.

Eq. (47) is immediate from Lemma 3, then Eq. (48) is a simple re-arrangement of the terms. Finally,
Eq. (49) uses Taylor series and the fact that 𝛼𝑐 = 𝑂 (𝜏) and 𝛼𝑇 = 𝑂 (𝜏). Let us note 𝑥 = 𝑇 (𝑇−1)𝑐2

2𝜏2 +
𝑂 ((𝑐/𝜏)4) and 𝑝 = 𝑃𝑐 (Tail). We have 𝑝 = 𝑝0(1 + 𝑥) and therefore:

𝑅𝛼 (Bern𝑝 ;Bern𝑝0)𝛼−1 =
(
1 − 𝑝
1 − 𝑝0

)𝛼
(1 − 𝑝0) +

(
𝑝

𝑝0

)𝛼
𝑝0

= (1 − 𝑝0 (1 + 𝑥))𝛼 (1 − 𝑝0)1−𝛼 (1 + 𝑥)𝛼 𝑝0

Using Taylor series at order 3 with respect to 𝑥 and 𝑝0 gives the following:

log𝑅𝛼 (Bern𝑝 ;Bern𝑝0) =
𝛼 𝑥2 𝑝0 (1 +𝑂 (𝑥, 𝑝0))

2

Therefore if we note c = (𝑐𝑖)𝑖∈[𝑀] , the tensorization property of the Rényi divergence gives:

log𝑅𝛼 (Pc;Q) ≤
𝛼 𝑇 4 ∥c∥44 𝑞 (1 +𝑂 (𝑥, 𝑝0))

8𝜏4

Since 𝑞 ≤ 2 𝜖 , we can conclude. □

B Deferred Definitions

B.1 Digital Signatures

We provide the formal definition of a digital signature scheme.

Definition 7 (Digital signature). A digital signature is a triple of algorithms (KeyGen, Sign,
Verify) such that:

KeyGen(1𝜅) → (vk, sk): This algorithm, from public parameters such as the security parameter 𝜅
outputs a signing key sk and a verification key vk. Moreover, it initializes any hash functions
that may be used during the signature.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 67

Sign(sk,msg) → sig: From a signing key sk and a message msg, this algorithm derives a signature
sig or returns an error message ⊥.

Verify(sig,msg, vk) → OK/FAIL: From a verification key vk, a message msg and a signature sig,
this deterministic algorithm outputs OK if the signature is accepted and FAIL otherwise.

Correctness. A digital signature is said to be correct if for any valid message msg ∈ M, it holds
that

Pr[Verify(Sign(sk,msg),msg, vk) = OK | (vk, sk) ← KeyGen()] ← 1 − negl(𝜅).

Security. Adigital signature is existentially unforgeable under chosenmessage attacks (EUF-CMA)
if the following advantage of any efficient adversaryA in winning the unforgeability game described
in Figure 8 is negligible:

AdvEUF-CMA
A B Pr[GameEUF-CMA

A (𝜅) = 1] .

We also define strong existentially unforgeable under chosen message attacks (sEUF-CMA) if the
game is relaxed so that the adversary wins as long as (msg∗, sig∗) ∉ 𝑄Sign.

Note that in this document, we consider a signature scheme that is 𝑄𝑠-bounded for 𝑄𝑠 =
poly(𝜅), where 𝑄𝑠 is the maximal signing query an adversary can perform. Specifically, the
scheme parameters are set with respect to the upper bound 𝑄𝑠 . We set 𝑄𝑠 ≈ 250 in our concrete
parameter selection. See Section 2.1 for more details.

C More Detail on Hardness Assumptions

C.1 Hardness of SelfTargetMSIS
As discussed in Section 4.1.1, SelfTargetMSIS is known to be as difficult as MSIS. For complete-
ness, we provide a reduction from SelfTargetMSIS to MSIS and display the asymptotic relations
of the parameters.

Lemma8 (Hardness of SelfTargetMSIS). For any adversaryA against the SelfTargetMSIS𝑞,ℓ,𝑘,C,𝜈,𝛽
problemmaking atmost𝑄ℎ random oracle queries, there exists an adversaryB against theMSIS𝑞,ℓ,𝑘,𝛽 ′
problem with 𝛽 ′ = 4𝛽 + 2𝜈+2 ·

√
𝑛𝑘 such that

AdvSelfTargetMSIS
A ≤

√
𝑄ℎ · AdvMSIS

B + 𝑄ℎ
|C| ,

where Time(B) ≈ 2 · Time(A).

Proof Sketch. To construct B, we simply invoke the standard forking lemma [BN06] to run A
twice. In particular, when B receives A← R𝑘×ℓ𝑞 as input, it invokes A on input A. B simulates
the random oracle H on the fly by sampling a random 𝑐 ← C. Eventually,A outputs (msg, s, h) ∈
{0, 1}2𝜅 × Rℓ+𝑘𝑞 × R𝑘𝑞𝜈 that breaks SelfTargetMSIS. That is(

s =

[
𝑐
s′

])
∧ (0 < ∥(s, 2𝜈 · h)∥2 ≤ 𝛽) ∧ G

(⌊ [
A | I

]
· s

⌉
𝜈
+ h, msg

)
= 𝑐.

Using the forking lemma, we can argue that when B rewinds A, A outputs (msg, s, h) with a
different 𝑐 ≠ 𝑐 such that(

s =

[
𝑐
s′

])
∧

(
0 < ∥(s, 2𝜈 · h)∥2 ≤ 𝛽

)
∧ G

(⌊ [
A | I

]
· s

⌉
𝜈
+ h, msg

)
= 𝑐.

68 Raccoon

with the specified probability in the statement. Moreover, since the forking lemma programs the
random oracle on the same input, we have⌊ [

A | I
]
· s

⌉
𝜈
+ h =

⌊ [
A | I

]
· s

⌉
𝜈
+ h mod 𝑞𝜈 ,

where recall that the equality holds over R𝑞𝜈 for 𝑞𝜈 = ⌊𝑞/2𝜈⌋ as the input space of G is R𝑘𝑞𝜈 ×
{0, 1}2𝜅 . Now, since the output of ⌊·⌉𝜈 is over R𝑞𝜈 and h ∈ R𝑘𝑞𝜈 , we have the equality over R𝑞 for
some 𝜹 ∈ R𝑘𝑞 such that ∥𝜹 ∥∞ ≤ 1:⌊ [

A | I
]
· s

⌉
𝜈
+ h =

⌊ [
A | I

]
· s

⌉
𝜈
+ h + 𝑞𝜈 · 𝜹 mod 𝑞. (50)

Define d ∈ R𝑘𝑞 as d B
[
A | I

]
· s− 2𝜈 ·

⌊ [
A | I

]
· s

⌉
𝜈
. By definition, we have ∥d∥∞ ≤ 2𝜈−1. We

define d similarly. Then, by multiplying both sides of Eq. (50) by 2𝜈 and plugging in d, we have[
A | I

]
· s + 2𝜈 · h − d =

[
A | I

]
· s + 2𝜈 · h − d + 2𝜈 · 𝑞𝜈 · 𝜹 mod 𝑞.

Define 𝜁 ∈ R𝑞 as 𝜁 B 𝑞 − 2𝜈 · 𝑞𝜈 . Then, by definition, we have |𝜁 | ≤ 2𝜈−1. Therefore, we can
rewrite the above equation as[

A | I
]
· s + 2𝜈 · h − d =

[
A | I

]
· s + 2𝜈 · h − d − 𝜁 · 𝜹 mod 𝑞.

Equivalently, we have[
A | I

]
·
([

𝑐 − 𝑐
s′ − s′

]
+

[
0ℓ

2𝜈 · (h − h)

]
−

[
0ℓ
𝜹 ′

])
︸ ︷︷ ︸

=:s∗

= 0𝑘 mod 𝑞,

where 𝜹 ′ = 𝜁 · 𝜹 + d̄− d, and 0𝑎 denotes the zero-vector of length 𝑎. Moreover, s∗ is bounded by

∥s∗∥22 ≤

[2 · 𝑐
2 · (s′ + 2𝜈 · h) − 𝜹 ′

]

2
2

≤



2 · 𝑐
2 · s′

2𝜈+1 · h
𝜹 ′



2

2

+ 8 ·
����〈 [𝑐s′] , [0ℓ

2𝜈 · h

]〉���� + 8 · ����〈 [𝑐s′] , [0ℓ𝜹 ′

]〉���� + 8 · ����〈 [0ℓ
2𝜈 · h

]
,

[
0ℓ
𝜹 ′

]〉����
≤



2 · 𝑐
2 · s′

2𝜈+1 · h
𝜹 ′



2

2

+ 12 ·



𝑐
s′

2𝜈 · h
𝜹 ′



2

2

≤ 16 · 𝛽2 + 39 · 22· (𝜈−1) · 𝑛𝑘.

where the second inequality follows from ∥a + b∥2 ≤
√
∥a∥22 + ∥b∥22 + 2⟨a, b⟩ for any vectors a, b,

and the third inequality follows from the arithmetic–geometric mean inequality. Thus, we have
∥s∗∥2 ≤ 4𝛽 + 2𝜈+2 ·

√
𝑛𝑘 as desired. We complete the proof by noticing that s∗ ≠ 0ℓ+𝑘 since 𝑐 ≠ 𝑐 .

This completes the proof. □

C.2 Hardness of ExtMLWE
Here we discuss the asymptotic hardness of ExtMLWE. While there are some works establishing
the hardness of ExtMLWE on MLWE [AA16, BJRW23], they do not cover our variant where the
hints are given in the form of polynomial coefficients. Indeed, if we try to adapt their proofs, we

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 69

incur a reduction loss of at least 2𝑛𝜂 , where 𝑛 is the lattice dimension and 𝜂 is the number of hints.
Ideally, we want the reduction loss to only scale with 𝜂. As handling the module case turns out
non-trivial, we indirectly establish the asymptotic hardness of our ExtMLWE by showing that
the non-structured variant reduces to MLWE with a polynomial reduction loss. The concrete
hardness of ExtMLWE is analyzed in Section 4.3.7.

Formally, we have the following, which is an extension of the reduction by [AP12] to the
multi-hint setting. We note that when F is distributed as a discrete Gaussian, we can extend the
reduction by [BLP+13] to the multi-hint setting without incurring an exponential loss in 𝜂, in
which case we can set 𝜂 = 𝜔asymp(1) ⪅ 𝑛ℓ .

Lemma 9 (Hardness of ExtLWE). Let 𝜂 = 𝑂 (1), 𝐵 = poly(𝜅), and 𝑞 = poly(𝜅) a prime such that
𝐵 < (𝑞 − 1)/4. Let D and F be distributions over Z𝑞 and Z𝜂×𝑛 (ℓ+𝑘)𝑞 such that we have Pr[v ←
D𝑛 (ℓ+𝑘) ,M ← F : ∥M · v∥∞ ≤ 𝐵] ≥ 1 − negl(𝜅). Then, for any adversary A against the
ExtLWE𝑞,𝑛ℓ,𝑛𝑘,D,F problem, we can construct an adversary B against the LWE𝑞,𝑛ℓ,𝑛𝑘,D problem
such that

AdvExtLWE
A (𝜅) ≥ 1

(2𝐵 + 1)𝜂 · AdvLWE
B (𝜅) − negl(𝜅) .

We also have Time(B) ≈ Time(A).

Proof. AssumeB receive (A, b) ∈ Z𝑛𝑘×𝑛ℓ𝑞 ×Z𝑛𝑘𝑞 as the LWE instance. We describe howB simulates
an ExtLWE instance to A. B first samples V ← Z𝑛𝑘×𝜂𝑞 , (s∗, e∗) ← D𝑛ℓ × D𝑛𝑘 , M ← F , and
sets (Ms,Me) ∈ Z𝜂×𝑛ℓ𝑞 ×Z𝜂×𝑛𝑘𝑞 as the first 𝑛ℓ and last 𝑛𝑘 columns of M, respectively. It then runs
through 𝑐 ∈ [𝜂 + 1] and finds T𝑐 = I𝑛𝑘 + 𝑐 · VMe ∈ Z𝑛𝑘×𝑛𝑘𝑞 such that det(T𝑐) ≠ 0, where I𝑛𝑘 is an
identity matrix of size 𝑛𝑘 . We show below that such 𝑐 can always be found.

It sets such matrix T𝑐 as T and further computes

A′ B TA − VMs ∧ b′ = Tb − VM
[
s∗

e∗

]
.

Finally, it provides (A′, b′,M,M

[
s∗

e∗

]
) toA as the ExtLWE instance. B then outputs whateverA

outputs.
Let us analyze the advantage of B. We first prove that there exists 𝑐 ∈ [𝜂 + 1] such that

det(T𝑐) ≠ 0. Using the Weinstein–Aronszajn identity, we have

det(T𝑐) = det(I𝑛𝑘 + 𝑐 · VMe) = det(I𝜂 + 𝑐 ·M⊤e V⊤) .

The right hand side is a polynomial of degree𝜂 in the variable 𝑐 , meaning that it equals 0 mod𝑞 on
at most 𝜂 values of 𝑐 ∈ [𝜂 + 1]. Since 𝑞 is a prime, there exists at least one invertible matrix such
that det(T𝑐) ≠ 0 over Z𝑞 . Therefore, when A is uniform, A′ is uniform as desired regardless of
b being random or not. Note that such 𝑐 can be computed in polynomial time since computing
the determinant of the matrix can be performed in polynomial time and we have 𝜂 = 𝑂 (1). We
next see what happens to b′.

We first consider the case b ← Z𝑛𝑘𝑞 . In this case, following the same argument, since b
is uniform, b∗ is uniform. Hence, the ExtLWE instance given to A is a valid random MLWE
instance.

70 Raccoon

We consider the other case b = As + e ∈ Z𝑛𝑘𝑞 for (s, e) ← D𝑛ℓ × D𝑛𝑘 . In this case, we have

b′ = T(As + e) − VM
[
s∗

e∗

]
= (A′ + VMs) · s + (I + VMe) · e − VM

[
s∗

e∗

]
= A′s + e + VM

[
s − s∗
e − e∗

]
︸ ︷︷ ︸

=:d

.

If d = 0, then b′ = A′s + e and the instance given to A is distributed exactly as a valid MLWE
instance. We first bound the probability that d = 0. With an overwhelming choice ofM← F , we
have the following over the random choice of (s, e, s∗, e∗) due to our assumption in the statement:

Pr[d = 0] = Pr

[
M

[
s
e

]
= M

[
s∗

e∗

]]
=

∑
w∈Z𝜂𝑞 :∥w∥∞≤𝐵

Pr

[
M

[
s
e

]
= w

]2
≥ 1
(2𝛽 + 1)𝜂 ·

∑
w∈Z𝜂𝑞 :∥w∥∞≤𝐵

Pr

[
M

[
s
e

]
= w

]
,

where the second equality follows since the pair (s, e) and (s∗, e∗) are identically and indepen-
dently distributed, and the last inequality follows from Cauchy–Schwarz. Since the right hand
side equals 1 with an overwhelming probability, we can bound Pr[d = 0] by 1

(2𝐵+1)𝜂 .
Otherwise, when d ≠ 0, assume without loss of generality that 𝑚1 ≠ 0, i.e., the first entry

of d is non-zero. Then, we can rewrite Vd = v1 · 𝑑1 + V≠1d≠1, where v1 is the first column of
V, and V≠1 and d≠1 are the matrix and vector by removing v1 and 𝑑1 from V and d, respectively.
Due to the assumption in our statement, with an overwhelming probability, we have ∥d∥∞ ≤ 2𝐵.
Combining this with 𝑑1 ≠ 0, 4𝐵 + 1 < 𝑞, and 𝑞 being a prime, v1 · 𝑑1 is distributed uniformly at
random over Z𝑛𝑘𝑞 . Since v1 is independent from V≠1, Vd is distributed uniformly at random as
well. Hence, the instance given to A is distributed as a random MLWE instance.

Combining everything, in case B is given a random MLWE instance, then A is given a ran-
dom ExtMLWE instance. In the other case, with probability at least 1

(2𝐵+1)𝜂 −negl(𝜅),A is given
a valid ExtMLWE instance, and otherwise a random ExtMLWE instance. This completes the
proof. □

D Full Detail on Black-box Security Reduction

In this section, we provide all the missing details to establish EUF-CMA security of the Raccoon
signature scheme.

D.1 Omitted Tools for Security Reduction

Min-entropy of MLWE for the sum of uniform distribution. In the security proofs, we
use the MLWE𝑞,ℓ,𝑘,D distribution with bit dropping: BD-MLWE, formally defined as follows.

Definition 8. LetBD-MLWE be theMLWE𝑞,ℓ,𝑘,D distribution with 𝜈w dropped bits. Namely, given
A ∈ R𝑘×ℓ𝑞 , BD-MLWE is defined as the ensemble {⌊A · s + e⌉𝜈w | (s, e) ← Dℓ+𝑘 }.

Conjecture 2. For the parameters of our scheme in Section 4.1.3, i.e., MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑑 ·rep) , we
have

𝐻∞(BD-MLWE) ≥ 2 · 𝜅.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 71

While we do not have a proof that the above min-entropy is large enough, there are strong
heuristic arguments toward this. First, if the distribution of (s, e) was Gaussian (even with a
much smaller standard deviation) we would be able to use the regularity theorem of [LPR13]
to argue 𝑛 > 2𝜅 bits of security. Second, even without Gaussians if we assume that As + e is
“well distributed”, i.e. if we assume that the distributions ⌊As + e⌉𝜈w and As + e mod 2𝜈w are
independent, then we have:

𝐻∞(As + e) = 𝐻∞(⌊As + e⌉𝜈w ,As + e mod 2𝜈w)
≤ 𝐻∞(BD-MLWE) + 𝑘𝑛𝜈w

If we also assume that the function (s, e) ↦→ As + e is injective, we get

𝐻∞(BD-MLWE) ≥ 𝐻∞(Dℓ+𝑘) − 𝑘𝑛𝜈w

Since D is the sum of 𝑇 uniform distribution with support 𝑁 = 2𝑢w it has min-entropy larger
than 𝑢w, hence:

𝐻∞(BD-MLWE) ≥ (ℓ + 𝑘)𝑛𝑢w − 𝑘𝑛𝜈w

For all parameters we consider we will have 𝐻∞(BD-MLWE) > 100𝜅, meaning that even if the
two assumptions we have made are not very accurate we have high confidence in the amount of
entropy used for the input of the hash function.

In the following, we recall the worst-case to average-case reductions in the module lattice
setting to support the confidence on MLWE and MSIS (or alternatively SelfTargetMSIS). We
note that the Raccoon signature scheme relies on the hardness of MLWE with the sums of uni-
form distributions, not the discrete Gaussian distribution as in the lemma statement below. In
our security proof, we plug in the standard deviation 𝜎 of the sum of uniform distribution (see
Eq. (6)), in place of the standard deviation of the discrete Gaussian distribution to set the asymp-
totic parameters. A concrete security analysis of the lattice assumptions we use are provided
in Section 4.3.

Lemma10 (Hardness ofMLWE ([LS15])). Let𝑘 (𝜅), ℓ (𝜅),𝑞(𝜅),𝑛(𝜅), 𝜎 (𝜅) such that𝑞 ≤ poly(ℓ ·𝑛),
𝑘 ≤ poly(ℓ), and 𝜎 ≥

√
ℓ · 𝜔asymp(

√
log𝑛). If D is a discrete Gaussian distribution with stan-

dard deviation 𝜎 , then the MLWE𝑞,ℓ,𝑘,D problem is as hard as the worst-case lattice Generalized-
Independent-Vector-Problem (GIVP) in dimension 𝑁 = ℓ𝑛 with approximation factor

√
8 · 𝑁ℓ ·

𝜔asymp(
√
log ℓ) · 𝑞/𝜎 .

Lemma 11 (Hardness of MSIS ([LS15])). For any 𝑘 (𝜅), ℓ (𝜅), 𝑞(𝜅), 𝑛(𝜅), 𝛽 (𝜅) such that 𝑞 > 𝛽
√
ℓ𝑛 ·

𝜔asymp(log(ℓ𝑛)), 𝑘 ≤ poly(ℓ), and log𝑞 ≤ poly(ℓ𝑛). The MSIS𝑞,ℓ,𝑘,𝛽 problem is as hard as the
worst-case lattice Generalized-Independent-Vector-Problem (GIVP) in dimension 𝑁 = ℓ𝑛 with ap-
proximation factor 𝛽

√
𝑁 · 𝜔asymp(

√
log𝑁).

Tail cut bounds. We provide some norm bounds regarding the sum of uniform distribution.
In practice, Lemma 12 is not tight. Therefore, for our concrete security analysis, we will rely on
sharper but heuristic bounds, see Section 4.3.6.

Lemma 12. Let v ∈ R𝐿 and 𝑐 ∈ R such that each integer coefficient of v is sampled from SU(𝑢,𝑇)
and ∥𝑐 ∥∞ = 1. Let 𝑁 = 2𝑢 and 𝜈2 = 𝑇𝑁 2

3 · (𝜅 + log(𝑛𝐿)) · log(2). Then, we have

Pr

[
∥v · 𝑐 ∥2 ≤ ∥𝑐 ∥1 ·

√
𝑛𝐿 ·

(
𝑇

2
+ 𝜈

)]
≥ 1 − 2𝜅 .

Pr

[
∥v · 𝑐 ∥∞ ≤ ∥𝑐 ∥1 ·

(
𝑇

2
+ 𝜈

)]
≥ 1 − 2−𝜅 .

72 Raccoon

Proof. Minkowski’s inequality implies ∥v · 𝑐 ∥2 ≤ ∥𝑐 ∥1 · ∥v∥2. Moreover, since the absolute value
of each coefficient of 𝑐 is less than 1, we have ∥v · 𝑐 ∥∞ ≤ ∥𝑐 ∥1 · ∥v∥∞. Since v′ = v + 𝑇2 · 1 is a
sub-Gaussian of parameter 𝜎2 = 𝑁 2 ·𝑇

6 , we can combine Eq. (4) with the union bound:

Pr [∥v′∥∞ > 𝜈] ≤ 2−𝜅 .

We obtain the bound using ∥v∥2 ≤
√
𝑛𝐿 ·

(𝑇
2 + ∥v′∥

)
. □

Tools for smooth Rényi divergence. We review some basic properties of the smooth Rényi
divergence.

Lemma 13. The smooth Rényi divergence satisfies the following properties.

1. Data processing inequality. Let 𝑃,𝑄 be two distributions, let 𝜖 ≥ 0, and𝑔 be a randomized
function over (a superset of) Supp(𝑃) ∪ Supp(𝑄).

𝑅𝜖𝛼 (𝑔(𝑃);𝑔(𝑄)) ≤ 𝑅𝜖𝛼 (𝑃 ;𝑄). (51)

2. Probability preservation. For any event 𝐸 ⊆ Supp(𝑄):

𝑃 (𝐸) ≤ (𝑄 (𝐸) + 𝜖) (𝛼−1)/𝛼 · 𝑅𝜖𝛼 (𝑃 ;𝑄) + 𝜖. (52)

3. Tensorization. Let (𝑃𝑖)𝑖∈𝐼 , (𝑄𝑖)𝑖∈𝐼 be two finite families of distributions, let 𝜖𝑖 ≥ 0 for 𝑖 ∈ 𝐼 ,
and let 𝜖 =

∑
𝑖∈𝐼 𝜖𝑖 .

𝑅𝜖𝛼

(∏
𝑖∈𝐼

𝑃𝑖 ;
∏
𝑖∈𝐼

𝑄𝑖

)
≤

∏
𝑖∈𝐼

𝑅𝜖𝑖𝛼 (𝑃𝑖 ;𝑄𝑖) . (53)

Proof. We recall that ΔSD and (𝑅𝛼𝛼 −1) can be cast as 𝑓 -divergences, following Csiszár’s terminol-
ogy [Csi63]. Item 1 follows from data processing inequalities of general 𝑓 -divergences. Item 2
is a special case of Item 1. Finally, Item 3 follows from tensorization properties of the statistical
distance and the Rényi divergence. □

For the sum of uniform distribution, we have a nice symmetry of the Rényi divergence.

Lemma 14 (Symmetry for symmetric distributions). Let 𝑃,𝑄 be distributions of support included
in Z. Suppose that 𝑃,𝑄 are “symmetric” in the sense that there exists 𝐶 ∈ Z such that 𝑃 (𝑥) =
𝑄 (𝐶 − 𝑥). Then for any 𝛼 > 1, 𝜖 > 0, it holds that 𝑅𝜖𝛼 (𝑃 ;𝑄) = 𝑅𝜖𝛼 (𝑄 ; 𝑃).

In particular, for 𝑃SU = SU(𝑢,𝑇) and𝑄SU the distributions corresponding to shifting the support
of 𝑃 by 𝑐 , we have 𝑅𝜖𝛼 (𝑃SU;𝑄SU) = 𝑅𝜖𝛼 (𝑄SU; 𝑃SU).

Proof. The bijection 𝑥 ↦→ 𝐶 − 𝑥 maps the distributions (𝑃,𝑄) to (𝑄, 𝑃). Therefore (𝑃,𝑄) and
(𝑄, 𝑃) are identical up to reindexing the support. In particular, 𝑅𝜖𝛼 (𝑃 ;𝑄) = 𝑅𝜖𝛼 (𝑄 ; 𝑃). Lastly, by
defining 𝐶 = 𝑇 · (2𝑢 − 1) + 𝑐 , we have 𝑃SU(𝑥) = 𝑄SU(𝐶 − 𝑥). □

D.2 Asymptotic Parameter Selection

Here, we provide a set of candidate asymptotic parameters for the Raccoon signature that are
used in Theorem 1.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 73

Random oracle model. The Raccoon signature relies on two hash functions H : {0, 1}∗ →
{0, 1}2𝜅 and G : R𝑘𝑞𝜈t × {0, 1}

2𝜅 → C, where C is the challenge space defined as

C = {𝑐 ∈ R𝑞 | ∥𝑐 ∥∞ = 1 ∧ ∥𝑐 ∥1 = 𝜔}. (54)

It further relies on the ExpandA function serving as a pseudorandom number generator. These
hash functions and ExpandA are modeled as random oracles throughout the security proof.

Constraints on parameters. We then give the intermediate variables that will be used during
the proof and their value when applicable:

• 𝐵sRD
𝑢t,∞, 𝐵

sRD
𝑢t,2

bounds on the 𝐿∞, 𝐿2-norm, respectively, of 𝑐 · (s, e) for any 𝑐 ∈ C and (s, e) ←
SU(𝑢t,𝑇)𝑛 (𝑘+ℓ) ,

• 𝐵sRD
𝑢w,∞ 𝐵sRD

𝑢w,2
bounds on the 𝐿∞, 𝐿2-norm, respectively, of (r, e′) ← SU(𝑢w,𝑇)𝑛 (𝑘+ℓ) ,

• 𝛽 =
√
𝜔 + 𝐵2 + 2𝜈t−1

√
𝜔𝑛𝑘 ,

• 𝛼 the order used in the smooth Rényi divergence,

• 𝜖Tail the statistical component that will be used in the smooth Rényi divergence argument,

• 𝜀Adv = AdvMLWE
B + AdvSelfTargetMSIS

B′ +𝜖negl, for Lemma 16 where B and B′ are constructed
from the EUF-CMA adversary A with similar advantages as A, and a fixed negligible
function 𝜖negl.

We now list the constraints which will appear in the proof:

• AdvMLWE
B = negl(𝜅). I.e. 𝑇 (2

2𝑢t−1)
12 ≥

√
ℓ · 𝜔asymp(

√
log𝑛), using Eq. (6) and Lemma 10.

• AdvSelfTargetMSIS
B′ = negl(𝜅). I.e. 𝛽 ′

√
𝑛(ℓ + 1) ·𝜔asymp(

√
log(𝑛ℓ)) ≤ 𝑞 where 𝛽 ′ = 4𝛽 +2𝜈w+1 ·√

𝑛𝑘 , using Lemmas 8 and 11.

• 𝛼𝐵sRD
𝑢t,∞ = 𝑜

(
2𝑢w
𝑇−1

)
, 𝛼 = 𝜔asymp(1) and 𝜖Tail =

(𝛼𝐵sRD
𝑢t,∞+𝑇)

𝑇

2𝑢w ·𝑇𝑇 !
= negl(𝜅). So that we can use the

smooth Rényi divergence as per Lemma 1 and Conjecture 1.

• 𝛼 = 2𝑢w

𝐵sRD
𝑢t,2

√
− log(𝜀Adv)𝑇
𝐶RÉnyi𝑄𝑠

,
𝐵sRD
𝑢t,2

2𝑢w ·
√
−𝐶RÉnyi ·log(𝜀Adv) ·𝑄𝑠

𝑇 = 𝑂 (log𝜅), and 𝑄𝑠 · 𝜖Tail ≤ 𝜖negl. So we
can use Lemma 16.

• 𝐵sRD
𝑢t,∞ = 𝜔 ·

(𝑇
2 + 𝛿𝑢t

)
, 𝐵sRD
𝑢t,2

=
√
𝑛(ℓ + 𝑘)·𝐵sRD

𝑢t,∞, and𝛿𝑢t = 2𝑢t
√
𝑇
3 · 𝜅 + log(𝑄𝑠 · 𝑛(ℓ + 𝑘)) · log(2).

For Lemma 12.

• 𝐵sRD
𝑢w,∞ = 2𝑢w ·𝑇 , and 𝐵sRD

𝑢w,2
= 2𝑢w

√
3𝑇 · 𝑛(ℓ + 𝑘) for Eq. (5).

• 𝐵2 = 𝐵sRD
𝑢w,∞ + 𝐵sRD

𝑢w,2
+ 2𝜈w ·

√
𝑛𝑘 for overwhelming correctness. For this bound note that

for an honest user h = 𝑐 · e + e′ + 𝛿 where 𝛿 is the sum of two rounding errors (hence
∥𝛿 ∥2 ≤ 2𝜈w ·

√
𝑛𝑘 .

74 Raccoon

Candidate asymptotic parameters. Finally, we give a set of asymptotic parameters which
fit the above constraints. It is worth noting that the only parameters that may depend on the
EUF-CMA adversary A are 𝛼 , 𝜖Tail, and 𝜀Adv used in the security proof. All other parameters
are scheme specific and defined independently of A.

• 𝑛, ℓ, 𝑘 = poly(𝜅) such that 𝑛 ≥ 𝜅,

• 𝑄ℎ = poly(𝜅): the maximum number of hash queries is any unbounded polynomial,

• 𝑄𝑠 = poly(𝜅): the maximum number of signing queries is polynomially bounded, i.e., the
parameter of the scheme depends on 𝑄𝑠 . Without loss of generality, we assume 𝑄𝑠 ≥ 𝜅,

• 𝑇 = 𝑑 · rep = 𝜔asymp(1), e.g., 𝑇 =
√
log𝜅,

• 𝜔 = 𝜔asymp(1), e.g., 𝜔 = log𝜅,

• 𝜖negl = 2−𝜅 ,

• 𝜈t, 𝜈w = 𝑂 (log𝜅). From which, we get 𝛽, 𝛽 ′ = poly(𝜅), and set polynomially sized modulus
𝑞 such that 𝛽 ′

√
𝑛(ℓ + 1) · 𝜔asymp(log(𝑛ℓ)) ≤ 𝑞,

• 2𝑢t = 4
√
ℓ · log𝜅 ,

• 2𝑢w = 𝐵sRD
𝑢t,2

√
𝐶RÉnyi𝑄𝑠

𝑇 ·
√

𝜅
log𝜅 · 𝑛(ℓ + 𝑘). From which we get the condition on Lemma 16, as

well as 𝜖Tail = negl(𝜅) since

𝜖Tail ≤
(
𝛼BsRD

𝑢t,∞
2𝑢w

+ 1
√
𝜅

)𝑇
≤

(√
− log(𝜖Adv) ·𝑇
𝑄𝑠 · 𝑛(ℓ + 𝑘)

+ 1
√
𝜅

)𝑇
≤

(
2
4
√
𝜅

)√log𝜅
= negl(𝜅) .

Where the first inequality comes from𝑇 ·𝜅1/2 ≤ 2𝑢w and the second inequality comes from
BsRD
𝑢t,2

=
√
𝑛(ℓ + 𝑘) · BsRD

𝑢t,∞. The last fact comes from 𝑄𝑠 ≥ 𝜅, 𝑇 =
√
log𝜅, and the fact

that we can assume 𝜀Adv ≥ 2
−
√

𝜅
log𝜅 ·𝑛 (ℓ+𝑘) as any adversary against SelfTargetMSIS with

𝛽 = poly(𝜅) can achieve better advantage than 𝜀Adv by random guessing.9 Following a
similar computation,

𝐵sRD
𝑢t,2

2𝑢w ·
√
−𝐶RÉnyi ·log(𝜀Adv) ·𝑄𝑠

𝑇 ≤ 1. Lastly, we have 𝑄𝑠 · 𝜖Tail ≤ 𝜖negl,

• Using how we set 2𝑢w , 𝛼 = 2𝑢w

𝐵sRD
𝑢t,2

√
− log(𝜀Adv)𝑇
𝐶RÉnyi𝑄𝑠

=
√
− log(𝜀Adv) ≤ 4

√
𝜅 ·

√
𝑛(ℓ + 𝑘). From this

we get 𝛼𝐵sRD
𝑢t,∞ = 𝑜

(
2𝑢w
𝑇−1

)
. Moreover, assuming the hardness of MLWE and SelfTargetMSIS,

we can bound 𝜀Adv ≤ 𝜅−1, which establishes 𝛼 ≥ log(𝜅) = 𝜔asymp(1).

D.3 Omitted Security Reduction

Here we provide the full proof of Theorem 1. Refer to Appendix D.2 for the parameters used in
the proof.

Proof. Let A be an adversary against the EUF-CMA security game. Below, we consider a se-
quence of hybrids, where the first hybrid is the original game and the last is a game that can be
reduced to the SelfTargetMSIS problem. We relate the advantage ofA for each adjacent hybrids.

9Note that when setting concrete parameters, we can use a lower bound derived from the best known attack
against the ExtMLWE and SelfTargetMSIS problems.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 75

Hybrid0
1: seed← {0, 1}𝜅
2: A← ExpandA(seed)
3: s← SU(𝑢t,𝑇)𝑛ℓ
4: e← SU(𝑢t,𝑇)𝑛𝑘
5: t B A · s + e
6: t B

⌊
t
⌉
𝜈t

7: vk B (seed, t)
8: 𝑄Sign B ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign return FAIL
11: return Verify(sig∗,msg∗, vk)

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: r← SU(𝑢w,𝑇)𝑛ℓ
3: e′ ← SU(𝑢w,𝑇)𝑛𝑘
4: w B ⌊A · r + e′⌉𝜈w
5: 𝑐poly B G(w, 𝜇)
6: z B 𝑐poly · s + r
7: y B A · z − 2𝜈t · 𝑐poly · t
8: h B w − ⌊y⌉𝜈w
9: sig B (𝑐poly, h, z)

10: if CheckBounds(sig) = FAIL goto Line 2
11: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
12: return sig

Figure 9: First hybrid game for the security proof. It corresponds to GameEUF-CMA described
in Figure 8. We assume A is given access to the random oracles (H,G,ExpandA).

Hybrid0: This is the original EUF-CMA security game. In particular, since the adversary only
has access to the output of the KeyGen and Sign algorithms, we can collapse lines 4 to 7
of Algorithm 1 by sampling (s, e) ← SU(𝑢t,𝑇)𝑛ℓ ×SU(𝑢t,𝑇)𝑛𝑘 and setting t B ⌊A · s + e⌉𝜈t ;
in the following, we will denote by t̄ the value A · s + e. Note that throughout the proof,
we implicitly view the 𝑛-dimensional vector output by SU(𝑢t,𝑇)𝑛 as an element over R𝑞 .
Similarly we collapse lines 4 to 8 of Algorithm 2 by sampling (r, e′) ← SU(𝑢w,𝑇)𝑛ℓ ×
SU(𝑢w,𝑇)𝑛𝑘 and setting w B ⌊A · r + e′⌉𝜈w . For ease of reading, as stated in the prepara-
tion step, we use the hash function G that corresponds to ChalPoly ◦ ChalHash to sample
𝑐poly B G(w, 𝜇).

AdvHybrid0
A = AdvEUF-CMA

A .

Hybrid1: In this hybrid, the challenger samples A uniformly at random from its target set R𝑘×ℓ𝑞

and programs ExpandA(seed) B A. As ExpandA is modeled as a random oracle and there
are at most𝑄ℎ random oracle queries, the probability that the programming of the random

76 Raccoon

Hybrid1
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ𝑞

3: ExpandA(seed) B A
4: s← SU(𝑢t,𝑇)𝑛ℓ
5: e← SU(𝑢t,𝑇)𝑛𝑘
6: t B A · s + e
7: t B

⌊
t
⌉
𝜈t

8: vk B (seed, t)
9: 𝑄Sign B ∅

10: (msg∗, sig∗) ← AOSgn() (vk)
11: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign return

FAIL
12: return Verify(sig∗,msg∗, vk)

Hybrid2
1: A← R𝑘×ℓ𝑞

2: s← SU(𝑢t,𝑇)𝑛ℓ
3: e← SU(𝑢t,𝑇)𝑛𝑘
4: t B A · s + e
5: t B

⌊
t
⌉
𝜈t

6: vk B (A, t)
7: 𝑄Sign B ∅
8: (msg∗, sig∗) ← AOSgn() (vk)
9: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =

H(H(vk)∥msg) return FAIL
10: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign return

FAIL
11: return Verify(sig∗,msg∗, vk)

Hybrid3

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: r← SU(𝑢w,𝑇)𝑛ℓ
3: e′ ← SU(𝑢w,𝑇)𝑛𝑘
4: w B ⌊A · r + e′⌉𝜈w
5: 𝑐poly ← C
6: z B 𝑐poly · s + r
7: y B A · z − 2𝜈t · 𝑐poly · t
8: h B w − ⌊y⌉𝜈w
9: G(w, 𝜇) B 𝑐poly ▷ Abort if already

programmed
10: sig B (𝑐poly, h, z)
11: if CheckBounds(sig) = FAIL goto Line 2
12: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
13: return sig

Hybrid4

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: r← SU(𝑢w,𝑇)𝑛ℓ
3: e′ ← SU(𝑢w,𝑇)𝑛𝑘
4: 𝑐poly ← C
5: z B 𝑐poly · s + r
6: z′ B 𝑐poly · e + e′ ▷ Note e = t − As
7: w B

⌊
A · z − 𝑐poly · t + z′

⌉
𝜈w

8: y B A · z − 2𝜈t · 𝑐poly · t
9: h B w − ⌊y⌉𝜈w

10: G(w, 𝜇) B 𝑐poly ▷ Abort if already
programmed

11: sig B (𝑐poly, h, z)
12: if CheckBounds(sig) = FAIL goto Line 2
13: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
14: return sig

Figure 10: The hybrid games 1 to 4 used in the proof ofTheorem 1. Differences from Hybrid𝑖−1 to
Hybrid𝑖 are highlighted . We assume A is given access to the random oracles (H,G,ExpandA).

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 77

Hybrid5

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: z← SU(𝑢w,𝑇)𝑛ℓ
3: z′ ← SU(𝑢w,𝑇)𝑛𝑘
4: 𝑐poly ← C
5: w B

⌊
A · z − 𝑐poly · t + z′

⌉
𝜈w

6: y B A · z − 2𝜈t · 𝑐poly · t
7: h B w − ⌊y⌉𝜈w
8: G(w, 𝜇) B 𝑐poly ▷ Abort if already

programmed
9: sig B (𝑐poly, h, z)

10: if CheckBounds(sig) = FAIL goto Line 2
11: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
12: return sig

Hybrid6
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ𝑞

3: ExpandA(seed) B A

4: t← R𝑘𝑞
5: t B

⌊
t
⌉
𝜈t

6: vk B (seed, t)
7: 𝑄Sign B ∅
8: (msg∗, sig∗) ← AOSgn() (vk)
9: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =

H(H(vk)∥msg) return FAIL
10: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign return

FAIL
11: return Verify(sig∗,msg∗, vk)

Hybrid7
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ𝑞

3: ExpandA(seed) B A
4: t← R𝑘𝑞
5: t B

⌊
t
⌉
𝜈t

6: vk B (seed, t)
7: 𝑄Sign B ∅
8: 𝐿SimT B ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =
H(H(vk)∥msg) return FAIL

11: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign return
FAIL

12: return Verify(sig∗,msg∗, vk)

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: z← SU(𝑢w,𝑇)𝑛ℓ
3: z′ ← SU(𝑢w,𝑇)𝑛𝑘
4: 𝑐poly ← C
5: w B

⌊
A · z − 𝑐poly · t + z′

⌉
𝜈w

6: y B A · z − 2𝜈t · 𝑐poly · t
7: h B w − ⌊y⌉𝜈w
8: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇, 𝑐poly)} ▷Abort if
∃𝑐′poly ∈ C ∪ {⊥} s.t. (w, 𝜇, 𝑐

′
poly) ∈ 𝐿SimT

9: sig B (𝑐poly, h, z)
10: if CheckBounds(sig) = FAIL goto Line 2
11: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
12: return sig

G(w,msg)
1: 𝜇 B H(H(vk)∥msg)
2: if ∃𝑐poly s.t. (w, 𝜇, 𝑐poly) ∈ 𝐿SimT

return 𝑐poly
3: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇,⊥)}
4: return G′(w,msg)

Figure 11: Last three Hybrid games for the proof ofTheorem 1. The differences between Hybrid𝑖−1
and Hybrid𝑖 are highlighted . Note that in Hybrid6, the signing oracle OSgn(msg) remains
the same as in Hybrid5. Moreover, in Hybrid7, the game uses another random oracle G′ (non-
accessible from A) and modifies the description of the random oracle G. We assume A is given
access to the random oracles (H,G,ExpandA).

78 Raccoon

oracle fail is bounded by 𝑄ℎ · 2−𝜅 . Thus, we have���AdvHybrid1
A − AdvHybrid0

A

��� ≤ 𝑄ℎ · 2−𝜅 .

Hybrid2: In this hybrid, the challenger adds a winning condition. Namely, when the adversary
produces a forgery on a message msg that provokes a collision in H(H(vk)∥msg★) for a
message msg★ previously queried to the signing oracle, the challenger does not view this
as a valid forgery. Since H : {0, 1}∗ → {0, 1}2𝜅 is modeled as a random oracle, this event
happens with probability at most 𝑄𝑠 · 2−2𝜅 :���AdvHybrid2

A − AdvHybrid1
A

��� ≤ 𝑄𝑠 · 2−2𝜅 .

While EUF-CMA security is guaranteed by setting the hash output length as 𝜅, we chose
2𝜅 for additional security properties. See Section 4.4 for more detail.

Hybrid3: In this hybrid, the challenger replaces non-programmed random oracle outputs in the
signing oracle with programmed outputs. Namely, it first samples an element 𝑐poly uni-
formly at random from the challenge space C. Then it programs the hash function to
consistently return this value 𝑐poly on input (𝜇,w) during further interactions with the
adversary.
Note that the signing responses in Hybrid2 are identically distributed to Hybrid1 unless
OSgn(·) is required to program a value that has already been queried by the adversary.
As w is sampled randomly following the BD-MLWE distribution as in Definition 8, this
happens with probability at most𝑄ℎ ·2−𝐻∞ (BD-MLWE) in each signing query. Thus it follows
that ���AdvHybrid3

A − AdvHybrid3
A

��� ≤ 1 −
(
1 −𝑄ℎ · 2−𝐻∞ (BD-MLWE)

)𝑄𝑠

≤ 𝑄𝑠 ·𝑄ℎ · 2−𝐻∞ (BD-MLWE) ,

where we have used Bernoulli’s inequality and𝑄ℎ < 2𝐻∞ (BD-MLWE) from Conjecture 2. For
completeness, recall that Bernoulli’s inequality implies (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 for every integer
𝑟 ≥ 0 and real number 𝑥 > −1.

Hybrid4: In this hybrid, the challenger computes the commitmentw using the public key before
rounding t̄ instead of an ephemeral LWE sample A · r + e′. As the challenger computes
w = ⌊A · r + e′⌉𝜈w =

⌊
A · z − 𝑐poly · A · s + e′

⌉
𝜈w

in the previous game, one can verify that

A · z − 𝑐poly · A · s + e′ = A · z − 𝑐poly · t̄ + 𝑐poly · e + e′︸ ︷︷ ︸
=:z′

,

which yields the equation in Hybrid3.
As it is simply a rewriting of w, it remains indistinguishable from Hybrid3:

AdvHybrid4
A = AdvHybrid3

A .

Hybrid5: In this hybrid, the challenger computes the response (z, z′) without using the secret
key s or the noise e. However, to do this the challenger has removed an explicit dependence
on s, e in z and z′ so the distribution of the signing responses are not statistically identical.
We argue that the two distributions are indistinguishable for an adversary that can make
no more than 𝑄𝑠 queries.

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 79

We recall theP andQ(center) defined in Section 4.1.3. LetP be the distribution SU(𝑢w,𝑇)𝑛 (ℓ+𝑘)
and Q(centerqs) be the distribution centerqs + P, where 𝑐qs ← C is the qs-th (qs ∈ [𝑄𝑠])

challenge used to respond to the signing oracle OSgn and centerqs B 𝑐qs ·
[
s
e

]
∈ Rℓ+𝑘𝑞 .

Define P∗ B P𝑄𝑠 and let Q∗centers be the tensored distribution ⊗qs∈[𝑄𝑠]Q(centerqs). Then,
P∗ and Q∗centers correspond to the distributions of (z, z′) in Hybrid5 and Hybrid4, respec-
tively. Lastly, let 𝜖Tail,centers B

∑
qs∈[𝑄𝑠] 𝜖Tail(centerqs) where recall Section 4.1.3 for the

definition of 𝜖Tail(centerqs).
We can now relate the advantage of this hybrid from the previous hybrid. Using the
probability preservation property and the tensorization of the smooth Rényi divergence
in Lemma 13, we have the following with overwhelming probability:

AdvHybrid4
A ≤ (AdvHybrid5

A + 𝜖Tail,centers)
𝛼−1
𝛼 ·

(
𝑅
𝜖Tail,centers
𝛼 (Q∗centers;P∗)

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A + 𝜖Tail,centers)

𝛼−1
𝛼 ·

∏
qs∈[𝑄𝑠]

(
𝑅
𝜖Tail (centerqs)
𝛼 (Q(centerqs);P)

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A + 𝜖Tail,centers)

𝛼−1
𝛼 ·

∏
qs∈[𝑄𝑠]

(
𝑅
𝜖Tail (centerqs)
𝛼 (P;Q(centerqs))

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A +𝑄𝑠 · 𝜖Tail)

𝛼−1
𝛼 ·

(
𝑅𝜖Tail𝛼 (P;Q)

)𝑄𝑠 +𝑄𝑠 · 𝜖Tail,

where the third bound follows from Lemma 14 and the final bound follows from the defi-
nitions of 𝜖Tail and 𝑅𝜖Tail𝛼 (P;Q). So as not to interrupt the proof, we postpone the proof
showing that the two advantages are polynomially related.

Hybrid6: In this hybrid, the verification key vk = (A, ⌊A · s + e⌉𝜈t) is replaced with (A, ⌊t̄⌉𝜈t)
where t̄ is sampled uniformly at random from R𝑘𝑞 . Since the secret key s is not used any-
where in Hybrid5, the only change in the view of the adversary is the distribution of the
verification key vk. Meaning that an adversary capable of distinguishing between Hybrid5
and Hybrid6 can be used to construct an adversary B solving the MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑇) prob-
lem: ���AdvHybrid6

A − AdvHybrid5
A

��� ≤ AdvMLWE
B .

Moreover we have Time(B) ≈ Time(A).

Hybrid7: Lastly, in this hybrid, the challenger prepares an empty list 𝐿SimT and a fresh random
oracle G′, and modifies the description of the random oracle G provided to the adversary.
Notably, the adversary is not provided access to G′. The list 𝐿SimT stores all the input for
which G was queried in the previous hybrid. The challenger checks the same abort condi-
tion using 𝐿SimT, corresponding to the fact that G was already programmed in the previous
hybrid. Finally, (w, 𝜇,⊥) ∈ 𝐿SimT denotes the point of G that the adversary queried, and
not something programmed by the challenger. Since the view of the adversary remains
identical in both hybrids, we have

AdvHybrid7
A = AdvHybrid6

A .

We show in Lemma 15 that there exists an adversaryB′ solving the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽
problem such that

AdvHybrid7
A ≤ AdvSelfTargetMSIS

B′ .

80 Raccoon

Before providing the proof of Lemma 15, we finish the proof of Theorem 1.
Collecting the bounds, we obtain

AdvHybrid0
A ≤ 2−𝜅 ·𝑄ℎ · (1 + 2−𝜅+1 ·𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +𝑄𝑠 · 𝜖Tail

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail𝛼 (P;Q)

)𝑄𝑠 ,

≤
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ + 𝜖negl

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail𝛼 (P;Q)

)𝑄𝑠 + negl(𝜅),

where 𝑄𝑠 · 𝜖Tail ≤ 𝜖negl = negl(𝜅) due to our parameter selection in Appendix D.2. Relying

on Conjecture 1, we can bound (𝑅𝜖Tail𝛼 (P;Q))𝑄𝑠 ≤ exp

(
𝐶RÉnyi ·𝑄𝑠 ·𝛼 · (𝐵sRD

𝑢t,2
)2

𝑇 ·22·𝑢w

)
. Hence, plugging in

our choice of 𝛼 , i.e., 𝛼 = 2𝑢w

𝐵sRD
𝑢t,2
·
√
− log(𝜀Adv) ·𝑇

𝐶RÉnyi ·𝑄𝑠
with 𝜀Adv = AdvMLWE

B + AdvSelfTargetMSIS
B′ + 𝜖negl, we

obtain

AdvHybrid0
A ≤ 𝜀Adv · exp

(
2 · 𝐵sRD

𝑢t,2

2𝑢w

√
−𝐶RÉnyi · log(𝜀Adv) ·𝑄𝑠

𝑇

)
︸ ︷︷ ︸

=:Λ

+negl(𝜅) .

We finally show in Lemma 16 that Λ = negl(𝜅), assuming the hardness of the MLWE and
SelfTargetMSIS assumptions. This completes the proof of Theorem 1. □

It remains to prove the following two Lemmas 15 and 16.

Lemma 15. There exists an adversary B′ solving the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 problem with

AdvHybrid7
A ≤ AdvSelfTargetMSIS

B′ .

Moreover we have Time(B′) ≈ Time(A) .

Proof. Let A be an adversary against the EUF-CMA security game in Hybrid7. We construct an
adversary B′ solving the SelfTargetMSIS problem having the same advantage asA. Assume B′
is given M ∈ R𝑘×(ℓ+1)𝑞 as the SelfTargetMSIS problem. We denote by G′ the oracle B′ is given
access to as part of the SelfTargetMSIS problem. The description of B′ follows.

First, B′ lazily simulates the random oracles H and ExpandA. It also simulates G by rely-
ing on G′ in the case (w,H(H(vk)∥msg)) was not used to answer the signing query (see Fig-
ure 11). Furthermore, B′ sets −t̄ ∈ R𝑘𝑞 to be the first column of M and A ∈ R𝑘×ℓ𝑞 to be the last ℓ
columns and prepares the verification key vk. Note that B′ perfectly simulates the challenger in
Hybrid7 as the matrix A and the vector t̄ are distributed uniformly in their respective sets. At the
end of the game, the adversary A outputs a forgery (𝑐∗poly, h

∗, z∗) for a message msg∗. B′ sets

𝜇∗ = H(H(vk)∥msg∗), s1 B z∗ ∈ Rℓ𝑞 , s2 B 𝑐∗poly · (t̄ − 2
𝜈t · ⌊t̄⌉𝜈t) ∈ R𝑘𝑞 , and s =


𝑐∗poly
s1
s2

 ∈ Rℓ+𝑘+1𝑞 .

It then outputs (𝜇∗, s, h∗) as the solution to the SelfTargetMSIS problem.

Let us analyze the success probability of B′. Conditioning on A′ breaking EUF-CMA secu-
rity, no (w′, 𝑐′poly) such that 𝑐′poly ≠ ⊥ and (w′, 𝜇∗, 𝑐′poly) ∈ 𝐿SimT exists due to the modification we

made inHybrid2. Since the forgery is valid, this implies 𝑐∗poly = G′
(⌊
A · z∗ − 2𝜈t · 𝑐∗poly · ⌊t̄⌉𝜈t

⌉
𝜈w
+ h∗, 𝜇∗

)

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 81

and ∥(z∗, 2𝜈w · h∗)∥2 ≤ 𝐵2. Now, notice that

[M | I] · s = [M | I] ·

𝑐∗poly
s1
s2

 = −𝑐∗poly · t̄ + A · s1 + s2 = A · z∗ − 2𝜈t · 𝑐∗poly · ⌊t̄⌉𝜈t .

In particular, 𝑐∗poly = G′
(
⌊[M | I] · s⌉𝜈w + h∗, 𝜇∗

)
. Finally, we have

∥s∥2 = ∥(𝑐poly, s1, s2, 2
𝜈w · h)∥2

≤ ∥𝑐∗poly∥2 + ∥(z, 2
𝜈w · h∗)∥2 + ∥𝑐∗poly∥2 · ∥ t̄ − 2

𝜈t · ⌊t̄⌉𝜈t ∥2
≤
√
𝜔 + 𝐵2 + 2𝜈t−1

√
𝜔 · 𝑛 · 𝑘

= 𝛽,

where we use the fact that ∥ t̄ − 2𝜈t · ⌊t̄⌉𝜈t ∥∞ ≤ 2𝜈t−1 by the definition of the ⌊·⌉𝜈t function. Since
s ≠ 0 as 𝑐∗poly has 𝜔 non-zero coefficients, we conclude that (𝜇∗, s, h∗) is a valid solution for the
SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 problem. It is clear that Time(B′) ≈ Time(A′). This completes the
proof. □

Lemma 16. Under the assumption that MLWE𝑞,ℓ,𝑘,SU(𝑢t,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 are
hard, we have the following according to our parameter selection in Appendix D.2:

Λ = 𝜀Adv · exp
(
2 · 𝐵sRD

𝑢t,2

2𝑢w

√
−𝐶RÉnyi · log(𝜀Adv) ·𝑄𝑠

𝑇

)
= negl(𝜅) .

Proof. Due to our assumption, we can assume 𝜀Adv = negl(𝜅). Plugging our value for 2𝑢w , we get
Λ = 𝑂 (𝜀Adv · exp(log𝜅)) = negl(𝜅) as desired. □

D.4 Discussion on Strong EUF-CMA Security.

In some applications, having strong EUF-CMA (sEUF-CMA) security may be better. We show
that the Raccoon signature scheme is sEUF-CMA secure if we add one more condition on the
parameters to those in Appendix D.2 and further rely on the MSIS𝑞,ℓ,𝑘,𝛽 ′′ assumption as defined
as follows:

• 𝛽 ′′ = 2
√
2 · (𝐵2 + 2𝜈w−1 · 𝑛𝑘)

• AdvMSIS
B′′ = negl(𝜅). I.e. 𝛽 ′′

√
𝑛ℓ · 𝜔asymp(

√
log(𝑛ℓ)) ≤ 𝑞, using Lemma 11.

We can use the same asymptotic parameters in Appendix D.2, where we may slightly enlarge 𝑞
to satisfy the above additional constraint.

Formally, the following establishes the sEUF-CMA security of the Raccoon signature scheme.

Theorem 2. The Raccoon signature scheme described in Section 2 is sEUF-CMA secure under the
MLWE𝑞,ℓ,𝑘,SU(𝑢w,𝑑 ·rep) , SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 , and MSIS𝑞,ℓ,𝑘,𝛽 ′′ assumptions.

Formally, for any adversary A against the sEUF-CMA security game making at most 𝑄ℎ ran-
dom oracle queries and 𝑄𝑠 signing queries, and 𝜖Tail and 𝑅

𝜖Tail
𝛼 (P;Q) satisfying Eqs. (15) and (16),

there exists adversaries B, B′, B′′ against the MLWE𝑞,ℓ,𝑘,SU(𝑢w,𝑑 ·rep) , SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 ,
and MSIS𝑞,ℓ,𝑘,𝛽 ′′ problems such that

AdvsEUF-CMA
A ≤ 2−𝜅 ·𝑄ℎ · (1 + 2−𝜅+1 ·𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ + AdvMSIS

B′′ +𝑄𝑠 · 𝜖Tail
) 𝛼−1

𝛼 ·
(
𝑅𝜖Tail𝛼 (P;Q)

)𝑄𝑠 ,

(55)

82 Raccoon

where Time(A) ≈ Time(B) ≈ Time(B′) ≈ Time(B′′) and we can assume Time(A) > 𝑂 (𝑄ℎ +
𝑄𝑠). Concretely, plugging in our candidate asymptotic parameters in Appendix D.2, we conclude
AdvsEUF-CMA

A is bounded by negl(𝜅).

Proof. The security proof mostly follows the same hybrids as for the proof of EUF-CMA security
in Appendix D.3. In particular, following the same hybrid argument, we arrive at an identical
Hybrid7, modulo the difference in the winning condition. For completeness, we provide Hybrid7
in Figure 12.

Hybrid8 : In this hybrid, the challenger adds a winning condition. Namely, when the adversary
outputs a forger (msg∗, sig∗), it recovers the (𝜇∗, y∗,w∗) as it would be done by the ver-
ification algorithm and checks if there exists (w, 𝜇, 𝑐poly) ∈ 𝐿SimT with 𝑐poly ≠ ⊥ such
that (w∗, 𝜇∗) ≠ (w, 𝜇). If not, the challenger does not count the forgery to be valid.
Notice if an adversary outputs a forgery that triggers this condition, then it means that
(w∗, 𝜇∗) was never generated by the challenger as there exists no 𝑐poly ∈ C such that
(w∗, 𝜇∗, 𝑐poly) ∈ 𝐿SimT. Put differently, an adversary that can trigger this condition sat-
isfies winning condition of EUF-CMA security, which we established in Appendix D.3.
Specifically, using the exact same argument, we can show that there exists an adversary
B′ solving the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w,𝛽 problem such that���AdvHybrid8

A − AdvHybrid7
A

��� ≤ AdvSelfTargetMSIS
B′ .

It remains to bound the advantage of an adversary against the sEUF-CMA security game
in Hybrid8. We show in Lemma 15 that there exists an adversary B′′ solving the MSIS𝑞,ℓ,𝑘,𝛽 ′′
problem such that

AdvHybrid8
A ≤ AdvMSIS

B′′ .

Collecting the bounds, we obtain the inequality in the problem statement. Moreover, adding
the MSIS𝑞,ℓ,𝑘,𝛽 ′′ assumption to the set of assumptions made in Appendix D.3, we conclude that
AdvHybrid0

A = negl(𝜅) under the same set of asymptotic parameters. It remains to prove the
following Lemma 17. □

Lemma 17. There exists an adversary B′′ solving the MSIS𝑞,ℓ,𝑘,𝛽 ′′ problem with

AdvHybrid8
A ≤ AdvMSIS

B′′ .

Moreover we have Time(B′′) ≈ Time(A) .

Proof. Let A be an adversary against the sEUF-CMA security game in Hybrid8. We construct
an adversary B′′ solving the MSIS problem having the same advantage as A. Assume B′′ is
given A ∈ R𝑘×ℓ𝑞 as the MSIS problem. B′′ simply simulates the challenger in Hybrid8, which it
can perfectly perform. At the end of the game, the adversary A outputs a forgery (𝑐∗poly, h

∗, z∗)
for a message msg∗. Let (𝜇∗, y∗,w∗) be the corresponding values computed in Figure 12. Due
to the condition we add in Hybrid8, conditioning on the forgery being valid, there exists some
signature sig = (𝑐poly, h, z) on message msg signed by B′′ such that (w, 𝜇) = (w∗, 𝜇∗), where
(𝜇, y,w) are defined similarly to above. B′′ retrieves such sig = (𝑐poly, h, z). It then computes
d =

(
A · z − 2𝜈t · 𝑐poly · ⌊t̄⌉𝜈t

)
− 2𝜈w ·

⌊
A · z − 2𝜈t · 𝑐poly · ⌊t̄⌉𝜈t

⌉
𝜈w
∈ R𝑘𝑞 such that ∥d∥∞ ≤ 2𝜈w−1 and

similarly for d∗. Finally, it sets s1 B z − z∗ ∈ Rℓ𝑞 , s2 B 2𝜈w · (h − h∗) − (d − d∗), s =
[
s1
s2

]
∈ Rℓ+𝑘𝑞 ,

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 83

Hybrid7
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ𝑞

3: ExpandA(seed) B A
4: t← R𝑘𝑞
5: t B

⌊
t
⌉
𝜈t

6: vk B (seed, t)
7: 𝑄Sign B ∅
8: 𝐿SimT B ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =
H(H(vk)∥msg) return FAIL

11: if (msg∗, sig∗) ∈ 𝑄Sign return FAIL
12: return Verify(sig∗,msg∗, vk)

OSgn(msg)
1: 𝜇 B H(H(vk)∥msg)
2: z← SU(𝑢w,𝑇)𝑛ℓ
3: z′ ← SU(𝑢w,𝑇)𝑛𝑘
4: 𝑐poly ← C
5: w B

⌊
A · z − 𝑐poly · t + z′

⌉
𝜈w

6: y B A · z − 2𝜈t · 𝑐poly · t
7: h B w − ⌊y⌉𝜈w
8: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇, 𝑐poly)} ▷ Abort if
∃𝑐′poly ∈ C ∪ {⊥} s.t. (w, 𝜇, 𝑐

′
poly) ∈ 𝐿SimT

9: sig B (𝑐poly, h, z)
10: if CheckBounds(sig) = FAIL goto Line 2
11: 𝑄Sign B 𝑄Sign ∪ {(msg, sig)}
12: return sig

Hybrid8
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ𝑞

3: ExpandA(seed) B A
4: t← R𝑘𝑞
5: t B

⌊
t
⌉
𝜈t

6: vk B (seed, t)
7: 𝑄Sign B ∅
8: 𝐿SimT B ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =
H(H(vk)∥msg) return FAIL

11: if (msg∗, sig∗) ∈ 𝑄Sign return FAIL
12: (𝑐∗poly, h

∗z∗) B sig∗

13: 𝜇∗ B H(H(vk)∥msg∗)
14: y∗ B A · z∗ − 2𝜈t · 𝑐∗poly · t
15: w∗ B ⌊y∗⌉𝜈w + h

∗

16: if ∀(w, 𝜇, 𝑐poly) ∈ 𝐿SimT s.t. 𝑐poly ≠ ⊥,
(w∗, 𝜇∗) ≠ (w, 𝜇) return FAIL

17: return Verify(sig∗,msg∗, vk)

G(w,msg)
1: 𝜇 B H(H(vk)∥msg)
2: if ∃𝑐poly s.t. (w, 𝜇, 𝑐poly) ∈ 𝐿SimT return

𝑐poly
3: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇,⊥)}
4: return G′(w,msg)

Figure 12: Hybrid7 and Hybrid8 for the proof of Theorem 2. Hybrid7 is exactly the same as those
defined in the proof of Theorem 1 modulo the part highlighted . Both hybrids share the same
signing oracle and random oracle G description. The highlighted part in Hybrid8 illustrates the
difference betweenHybrid7. We assumeA is given access to the randomoracles (H,G,ExpandA).

84 Raccoon

and outputs s as the solution to the MSIS problem.

Let us analyze the success probability of B′′. Conditioning on A′ breaking EUF-CMA se-
curity, we have sig ≠ sig∗, implying (𝑐poly, h, z) ≠ (𝑐∗poly, h

∗, z∗). On the other hand, due to the
winning condition we add in Hybrid8, we have (w, 𝜇) = (w∗, 𝜇∗). Since the forgery is valid, we
have 𝑐poly = G(w, 𝜇) = G(w∗, 𝜇∗) = 𝑐∗poly. Combining the two, we establish (h, z) ≠ (h∗, z∗). If we
have z ≠ z∗, then s1 ≠ 0. Otherwise, if h ≠ h∗, we first observe that d = d∗ as (𝑐poly, z) = (𝑐∗poly, z

∗).
This implies that s2 ≠ 0. In either case, we establish that s ≠ 0.

Next, notice that from w = w∗, we have⌊
A · z − 2𝜈t · 𝑐poly · ⌊t̄⌉𝜈t

⌉
𝜈w
+ h =

⌊
A · z∗ − 2𝜈t · 𝑐∗poly · ⌊t̄⌉𝜈t

⌉
𝜈w
+ h∗.

Multiplying both side by 2𝜈w and plugging in (d, d∗), we have(
A · z − 2𝜈t · 𝑐poly · ⌊t̄⌉𝜈t

)
+ 2𝜈w · h − d =

(
A · z∗ − 2𝜈t · 𝑐∗poly · ⌊t̄⌉𝜈t

)
+ 2𝜈w · h∗ − d∗.

Using the fact that 𝑐poly = 𝑐∗poly, we can rewrite the equation as

A · (z − z∗)︸ ︷︷ ︸
=s1

+ 2𝜈w · (h − h∗) − (d − d∗)︸ ︷︷ ︸
=s2

= 0,

which in particular implies A · s = 0 as desired. Lastly, we have

∥s∥22 = ∥(s1, s2)∥22

≤ 4 ·



z
2𝜈w · h

d



2

2

+ 8 ·
����〈 [z

2𝜈w · h

]
,

[
0ℓ
d

]〉����
≤ 8 ·



z
2𝜈w · h

d



2

2

≤ 8 · (𝐵2
2 + 22(𝜈w−1) · 𝑛𝑘),

where the second inequality follows from ∥a + b∥2 ≤
√
∥a∥22 + ∥b∥22 + 2⟨a, b⟩ for any vectors

a, b, and the third inequality follows from the arithmetic–geometric mean inequality. Therefore,
∥s∥2 ≤ 𝛽 ′′ = 2

√
2 · (𝐵2 + 2𝜈w−1 · 𝑛𝑘) and it is a valid solution for the MSIS𝑞,ℓ,𝑘,𝛽 ′′ problem. It is

clear that Time(B′′) ≈ Time(A′). This completes the proof. □

R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi and M-J. Saarinen 85

E NIST requirements

This section maps the requirements from NIST’s call for additional digital signature schemes
[NIS22] to the corresponding parts of this document and of the submission.

2.A Cover Sheet

The cover sheet following [NIS22, §2.A] is included in this submission.

2.B.1

• The formal specification according to [NIS22, §2.B.1] is in Section 2;

• The design rationale according to [NIS22, §2.B.1] is in Section 1.2; various design choices
are also discussed throughout Section 2;

• Besides the security level, Raccoon admits a single tunable parameter: the number of shares
𝑑 . An analysis of how this impacts security and performances is provided in Section 4, in
particular Section 4.2;

• The provenance of constants is provided throughout Section 2. For example, all domain
separation headers are constructed as in Section 2.4.3, NTT-related constants are explained
in Section 2.7, and norm bounds are explained in Section 2.6.2.

2.B.2

Raccoon’s estimated computational efficiency and memory requirements for the NIST PQC Ref-
erence Platform are provided in Section 3. In order to facilitate reproducibility, the platform and
settings used for benchmarking are described in Section 3.2.

2.B.3

KnownAnswer Test (KAT) values are provided as part of this submission. In addition, Section 2.9
provides SHA-256 hashes of the KAT files and explains how they were generated.

2.B.4

A security analysis is conducted in Section 4. First, a black-box security reduction to well-
understood assumptions is conducted in Section 4.1. Then, the impact of probing on the security
of Raccoon is discussed in Section 4.2. Finally, based on the two previous sections and on the
state-of-the-art, Section 4.3 discusses the security of concrete parameter sets.

2.B.5

Known cryptanalytic attacks are discussed in Section 4.3.

2.B.6

Advantages and limitations are listed in Section 1.3.

2.B.6

Intellectual property statements are attached in separate documents as part of this submission.

	Introduction to Raccoon
	Motivation and Context
	Design Rationale and Technical Overview
	Advantages and Limitations
	Advantages
	Limitations

	Use Cases

	Technical Specification
	Parameter Sets
	Notation
	Main Functions
	Key Generation
	Signing Procedure
	Verification Procedure

	Auxiliary Functions
	Encoding of Variables
	Symmetric Cryptography: SHAKE256
	XOF Inputs: The Domain Separation Prefix
	Checking Bounds
	Error Distributions
	Challenge Computation
	Refresh and Decoding Gadgets

	Serialization and Deserialization
	Signature Format (sig)
	Public Key Format (vk)
	Secret Keys (sk) in the Reference Implementation

	Provenance of Rejection Bounds
	Signature Field Size |sig |
	Scaled Squared Norm 2-64B22 and Infinity Norm B

	Number Theoretic Transforms
	NTT Conventions
	Provenance of Modulus q and Tweak Constants
	Sampling into the NTT Domain

	RBGs for Secret Key Bits and MRBGs for Masking Bits
	Random Bit Generators (RBGs)
	Masking Random Generators (MRGs)

	Known Answer Tests (KATs)

	Performance Analysis
	General Implementation Characteristics
	Performance on the NIST x64 Reference Platform
	Description of the Reference Implementation
	Benchmarking Details

	Hardware Architectures
	XOF Samplers in Hardware
	Mask Compression Techniques to Reduce Memory
	Size and Performance

	Leakage Assessments and Vulnerability Analysis

	Security Analysis
	Black-box Security Reduction
	Hardness Assumptions
	Smooth Rényi Divergence
	Security Reduction
	An Alternative Proof Aiming For 2-Security

	Security against Probing Adversaries
	Impact of Probing on [alg:addrepnoise]AddRepNoise.
	Probing Security of Key Generation
	Probing Security of Signing

	Concrete Security
	Modelization and Methodology
	Roadmap
	Concrete Model of Lattice Reduction, GSA and Beyond
	Hardness of Key Recovery
	Hardness of Direct Forgery
	Leakage of Signatures
	On the ExtMLWE Assumption.
	Putting it All Together.

	Additional ``BUFF'' Security Properties

	Rényi Divergence Arguments for Sums of Discrete Uniform Variables
	The Sum of Discrete Uniform Variables
	Smooth Rényi Divergence Between Shifted Copies of PN, T
	Selecting P' and Q'
	Partial Sum Over the Sides
	Partial Sum Over the Head
	Proof of lem:smooth-renyi

	Distribution of Extreme Events

	Deferred Definitions
	Digital Signatures

	More Detail on Hardness Assumptions
	Hardness of SelfTargetMSIS
	Hardness of ExtMLWE

	Full Detail on Black-box Security Reduction
	Omitted Tools for Security Reduction
	Asymptotic Parameter Selection
	Omitted Security Reduction
	Discussion on Strong EUF-CMA Security.

	NIST requirements

