RACCOON: EASY TO MASK, EASY TO THRESHOLDIZE

SIDE-CHANNEL ATTACKS B SO YOU WANT TO MASK DILITHIUM?

When deployed on real-world devices, algorithms are vulnerable to physical leakage. Masking is the most common countermeasure against side-channel attacks. It splits every Dilithium.Sign(msg, sk)
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Step 2. Unmasked Raccoon is EUF-CMA under standard assumptions: P

¥ MLWE for the security of the secret signing key.
¥ SelfTargetMSIS for the unforgeability of signatures How do we generate one-time masks? Each pair of users (i, j) share a symmetric key K;;.

Passing K;;into a PRF generate a different one-time mask m;; each session.

Summary. We illustrate the impact of the security reduction on the modulus g. * BLAZING FAST PERFORMANCES Example. Below, values in blue are made public, and values in yellow are learned by

corrupted parties (1 and 2).
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