
RACCOON: EASY TO MASK, EASY TO THRESHOLDIZE

RACCOON

Be like water: a leading principle of Raccoon is to
adapt our design to the constraints of masking. This
led to the following choices:

Masking-friendly noise sampling. We
developed a novel procedure called AddRepNoise
that samples noise in a masked, secure and
efficient way.

Raccoon.Sign(msg, sk)
1. Sample a short secret vector r [Linear]
2. Compute a commitment w = A · r [Linear]
3. Compute a challenge c = H(msg,w1)
4. Compute a response z = c · sk + r [Linear]

[No rejection sampling!]
5. Output the signature sig = (c, z)

No rejection sampling.
Since this operation is
costly to mask, we simply
remove it and update the
parameters.

THRESHOLD

Threshold Raccoon
Round 1:
1. Generate uniform masks mi,j

2. Sample short ri
3. wi =

[
A I

]
· ri

4. comi = Hcom(wi, msg,S)
5. Broadcast comi & mi =

∑
jmi,j

Round 2: Broadcastwi and signature
of view of Round 1
Round 3:
1. w =

∑
iwi

2. c = H(vk, msg,w)
3. m∗

i =
∑

imj,i

4. zi = ri + c · 𝜆i · ski +m∗
i

5. Broadcast zi
Combine: the final signature is(

c, z =
∑
i∈S

(
zi −mi

))

Raccoon is easy to thresholdize. Threshold
Raccoon is similar to Raccoon, with two
differences:

Additive secret-sharing is replaced by
Shamir secret-sharing (aka Lagrange
interpolation)

Parties hide their Round 3 responses
using one-time masks (in yellow).
Summing all Round 3 responses
magically cancels out all masks.

How dowe generate one-timemasks? Each pair of users (i, j) share a symmetric key Ki,j.
Passing Ki,j into a PRF generate a different one-time mask mi,j each session.

Example. Below, values in blue are made public, and values in yellow are learned by
corrupted parties (1 and 2).
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Further reading:
del Pino et al. Threshold Raccoon: Practical Threshold Signatures from Standard Lattice
Assumptions, EUROCRYPT 2024.
Espitau, Katsumata and Takemure. Two-Round Threshold Signature from Algebraic
One-More Learning with Errors, ePrint 2024/496.

SECURITY
Our security proof is in two steps (see picture):
1. “Masked Raccoon vs probing adversary” ≥ “Unmasked Raccoon vs regular adversary”
2. “Unmasked Raccoon vs regular adversary” ≥ MLWE + SelfTargetMSIS
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Step 1. By leveraging the (SNI) composition properties of masked subroutines, we may
assume that all probes are inside the AddRepNoise subroutine. We then perform a non-black
box analysis of AddRepNoise. This gives a reduction to unmasked Raccoon against a regular
(EUF-CMA) adversary with:

The same dimensions
The same modulus q
A slightly smaller noise (by a factor

√
2)

Step 2. Unmasked Raccoon is EUF-CMA under standard assumptions:
MLWE for the security of the secret signing key.
SelfTargetMSIS for the unforgeability of signatures

Summary. We illustrate the impact of the security reduction on the modulus q.
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Future improvements. We will replace the Rényi divergence by the recent Hint-MLWE
assumption (Kim et al., CRYPTO 2023). It admits a provable reduction to MLWE for Gaus-
sians, and a plausible one for sums of uniforms. Signatures become 20% shorter.
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MASKING
Masking is the most common countermeasure against side-channel attacks. It splits every
sensitive value x in d shares such that:

x1 + · · · + xd = x mod q. (1)

+

Masking is a trade-off between security and
efficiency, parametrized by d:

Security. An attacker needs to correctly
guess the value of all shares x1, . . . , xd in
order to recover x. This task becomes
exponentially harder when d increases.
Efficiency. The implementation
becomes polynomially slower in d.

Type of
operation

Masking
overhead

Linear Õ (d)

Multiplication O(d 2)

Other O(d 2 log q)

SIDE-CHANNEL ATTACKS
When deployed on real-world devices, algorithms are vulnerable to physical leakage.

Timing Acoustic

Electromagnetic Power

This requires countermeasures.

SO YOUWANT TOMASK DILITHIUM?
Dilithium.Sign(msg, sk)
1. Sample a short secret vector r [Sample]
2. Compute a commitment w = A · r [Linear]
3. Decompose w in its {high, low}-order bits: w = w0 + 2k ·w1. [Round]
4. Compute a challenge c = H(msg,w1)
5. Compute a response z = c · sk + r [Linear]
6. If z is not in a given interval S, go to step 1. [Reject]
7. Output the signature sig = (c, z)

Dilithium contains several
subroutines that are difficult to
mask, marked with [Round],
[Sample] and [Reject].

When masked, these incur a costly
overhead O(d 2 log q).
Performance numbers from:

Coron et al., Improved Gadgets
for the High-Order Masking of
Dilithium, TCHES 2023.
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BLAZING FAST PERFORMANCES

Speed: When masked, Raccoon is
significantly faster than Dilithium:

4 shares: Raccoon is 19× faster
16 shares: Raccoon is 536× faster
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Memory: We use new techniques that allow to keep the RAM usage below 128 Kbytes,
even when masked at order 32. More details in:

Saarinen and Rossi, Mask Compression: High-Order Masking on Memory-Constrained
Devices, SAC 2023.

Brought to you by the Raccoon team: Rafaël del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, Mélissa Rossi and Markku-Juhani Saarinen. https://raccoonfamily.org

https://raccoonfamily.org

